Table of Contents

Preface to the First Edition	V
Introduction	1
Chapter.1: <i>In vitro</i> Production of Secondary Metabolites Used in Pharmaceutical Industries	7
1.1.Types of cultures	7
1.2. Production of secondary metabolites: <i>in vitro</i> production/classical methods	9
1.3. Important concepts related to the production of secondary metabolites from higher plants using plant biotechnology techniques	16
1.3.1. Differentiation	16
1.3.2. Stress Products	24
1.3.3. Genetic Engineering Products	27
1.4. Preservation and multiplication of plant resources	34
1.5. Applicable methods used for the enhancement of the <i>in vitro</i> production of secondary metabolites	36
1.5.1. Selection of source materials	37
1.5.2. Selection of superior cell lines	38
1.5.3. Optimization of culture conditions	40
1.5.4. Alteration of controls of secondary metabolism pathways	48
1.5.5. Elicitation	50
1.5.6. Genetic transformation	52
1.5.7. Product release and adsorption	54
1.5.8. Bioconversion	58
1.5.9. Root cultures	59
1.5.10. Plant cell cultures	65
1.5.11. Cryopreservation	69 70
1.5.12. Production in differentiated tissues	70 71
1.5.13. (Micro) propagation 1.5.14 Programs addition for the improvement of secondary	71
1.5.14.Precursor addition for the improvement of secondary	73

metabolites production	
1.5.15.Metabolic engineering and the production of secondary	75
Metabolites	
1.5.16.Bioreactors scaling up of the production of secondary	78
metabolites	
1.5.17.Immobilization scaling up of secondary metabolites	79
accumulation	
1.6. Industrial production of useful biochemicals by higher-plant cell	83
cultures	
1.6.1. Market-value estimations	83
1.6.2. Major constraints of industrial production	86
1.6.3. Achievements	87
1.6.4. Prospects	92

98

Chapter.2. Examples of *in vitro* Cultures Producing

Pharmaceutical Products of Interest

2.1. Production of anticancer agents	98
a-Podophyllotoxin production from in vitro cultures of Podophyllum	98
b-Paclitaxel from in vitro cultures of Taxus	100
c-Terpenoids from in vitro cultures of Fossombronia	108
d- Indole Alkaloids: Vinblastine derivatives from in vitro cultures of	109
Catharanthus	
e-Camoptothecin derivatives from in vitro cultures of Camptotheca	114
f- Antitumor activity of in vitro cultures of green tea seed (Camellia	115
sinensis L.)	
g- Production of shikonin derivatives from in vitro cultures of	116
Arnebia as an antitumor agent	
h- Anticancer activity of in vitro cultures of rice	118
i-Production of carotenoids from in vitro cultures of tomato cell	119
suspension cultures (Lycopersicon esculentum) as anticancer agents	
2.2. In vitro production of antioxidant agents	124
2.3. Production of purgative agents; Anthraquinone derivatives from <i>in</i>	130
<i>vitro</i> cultures of <i>Rheum</i>	
2.4.Production of drugs for cardiac diseases	131
a-Digoxin derivatives from in vitro cultures of Digitalis	131
b-In vitro production of Diosgenin	132
c-Tanshinones from <i>in vitro</i> cultures of Salvia	134
2.5. Production of antimicrobial agents	136
a- In vitro production of Berberine	136
b- In vitro production of isoquinoline alkaloids	137
c-Linalool and linalylacetate from in vitro cultures of Mentha	141
d-Antibacterial agents from Fagonia arabica using tissue culture	142

technique

technique	
2.6. Production of analgesic agents; Morphine and Codeine from in vitro	144
cultures of <i>Papaver</i>	
2.7. Production of tonic agents; Ginsenosides from <i>in vitro</i> cultures of	145
Panax	
2.8. Production of drugs for mental diseases; In vitro production of L-	148
DOPA	
2.9. Production of flavours, food additives and perfumes	149
a- In vitro production of Menthol	149
b-Capsaicin from <i>in vitro</i> cultures of <i>Capsicum</i>	152
c-Vanillin from <i>in vitro</i> cultures of <i>Vanilla</i>	153
d-Natural sweetner (Hernandulcin from in vitro cultures of Amsonia	156
spp. and Lippia spp.)	
e- <i>In vitro</i> production of food coloring agents (Anthocyanin)	157
f- Production of polyunsaturated fatty acids from <i>in vitro</i> cultures	160
of <i>Echium</i>	
2.10.Production of a single drug for many diseases; compound with	161
various purposes	
a- In vitro cultures of Cephaelis as emetic, expectorant and	161
amoaebacide agent	
b- <i>In vitro</i> cultures of <i>Cinchona</i> as antimalarial and antirrhythmic	163
agent	
c- <i>In vitro</i> production of phenylethanoid glycosides with	165
antioxidant, antiviral, antiinflamatory, antibacterial,	
antihyperalgesic and antitumor activities	
d-Artimisin from <i>in vitro</i> cultures of <i>Artemisia</i> as antimicrobial and	167
antimalarial agent	
e- In vitro cultures of curcuma longa (turmeric) as food coloring,	170
antioxidant and antimicrobial, anticancer, antidiabetic,	
antiinflammatory agent and drug against Alzheimer's, digestive,	
respiratory problems, gallbladder and immunodeficiency diseases	
f- <i>In vitro</i> cultures of <i>Camptotheca</i> as anticancer, antiAIDS and	178
antimalarial agent	
g-Triterpenoids from <i>in vitro</i> cultures of <i>Betula</i> as antiAIDS,	181
antibacterial and antitumor agent	101
h- Paclitaxel production from <i>in vitro</i> cultures of <i>Taxus</i> as	183
anticancer and antiAIDS agent	200
i- <i>In vitro</i> production of anticancer and antihypertensive indole	184
alkaloids from <i>Catharanthus</i>	101
j- <i>In vitro</i> production of bakuchiol from <i>Psoralea</i> as antimicrobial,	185
antioxidant, antitumor and antiinflammatory agent	100
k- <i>In vitro</i> production of puerarin (isoflavones) from <i>Pueraria</i> for the	187
treatment of angina pectoris, hypertension, deafness, optic nerve	-37
atrophy or retinitis and is widely used as an antipyretic,	
antidiarrhetic, diaphoretic and antiemetic substance	
university and the and an and the published	

I-Antioxidant and antibacterial agents from <i>Rumex vesicarius</i> using tissue culture technique m- <i>In vitro</i> production of Picroside-I from <i>Picrorhiza</i> as antioxidant antiallergic, antiasthamatic, hepatoprotective, anticancer and immunomodulatory agent	188
	192
n- <i>In vitro</i> production of phenylpropanoids and naphtodianthrones from <i>Hypericum</i> as antiviral, antimicrobial, wound healing and antidepressant agent	195
2.11. Additional examples	198
Conclusions and Future Perspectives	200
Bibliography	202