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ABSTRACT 

Objective: In this study, we conducted a comprehensive Quantitative Structure-Activity Relationship (QSAR) analysis of an oxadiazole derivative 
exhibiting potent anti-tubercular activity by inhibiting synthesis.  

Methods: Our investigation employed both 3D atom-based and field-based Comparative Molecular Field Analysis/Comparative Molecular Similarity 
Indices Analysis (CoMFA/CoMSIA) techniques, along with auto QSAR analysis using a 2D canvas. The CoMFA and CoMSIA methodologies allowed for 
the exploration of molecular interactions and structural features contributing to the molecule's inhibitory potency. Utilizing these 3D approaches, 
we delineated the steric, electrostatic, hydrophobic, and hydrogen bond acceptor/donor fields influencing the molecular activity. Furthermore, the 
auto QSAR analysis provided valuable insights into the 2D structural descriptors governing the anti-TB efficacy of the oxadiazole compound.  

Results: Our findings not only elucidate the molecular determinants essential for inhibitory activity but also provide a robust predictive model for 
assessing the anti-TB activity of structurally related compounds. Both 3D QSAR and 2D QSAR models were designed and generated. These models 
were found to be useful in predicting the anti-TB activity of oxadiazole derivatives. The best model for accurately predicting activity was found to 
have a Q² value of 0.9558 and an R² value of 0.979. 

Conclusion: This integrative QSAR study contributes to the rational design and optimization of novel oxadiazole-based therapeutics against 
tuberculosis, addressing the urgent need for effective treatment strategies against this global health threat. 
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INTRODUCTION 

In 2022, the global Tuberculosis (TB) situation recorded 1.3 million 
deaths, with 167,000 individuals having both TB and HIV. TB is ranked 
as the second leading infectious cause of death globally following 
COVID-19, including its impact on HIV and AIDS. Around 10.6 million 
people contracted TB globally in 2022 [1]. In 2022, the Presumptive 
TB Examination Rate (PTBER) for the country increased to 1281 per 
lakh population, marking a 68% rise from 763 in 2021 [2]. TB is 
caused by Mycobacterium tuberculosis. The emergence of drug-
resistant strains poses a significant global threat, leading to the 
development of Multiple Drug-Resistant Tuberculosis (MDR-TB), 
Extreme Drug-Resistant Tuberculosis (XDR-TB), and Total Drug-
Resistant Tuberculosis (TDR-TB). Till now, several targets have been 
explored for anti-tubercular activity. Fatty acid synthesis is 
particularly attractive for the rational design of novel therapeutic [3]. 

Fatty acids constitute the primary metabolites produced by a 
complex and indispensable biosynthetic pathway. Microbial fatty 
acid synthesis is a tightly regulated process involving multiple 
enzymatic steps and intricate molecular mechanisms [4, 5].  

Fatty acid synthesis is facilitated by fatty acid synthase enzymes, 
namely FAS-I and FAS-II. Unlike mammals, where FAS-I handles 
synthesis, Mycobacterium employs both FAS-I and FAS-II. This 
distinction makes FAS-II an appealing focus for anti-tubercular 
research [6].  

Isoxyl (ISO) and Thiacetazone (TAC) are prodrugs historically 
employed in clinical tuberculosis treatment. Recent findings reveal 
their efficacy against Mycobacterium tuberculosis by targeting the 
dehydration step in the type II fatty acid synthase pathway [7].  

Various chemical groups have been extensively investigated, 
synthesized, and assessed worldwide for their efficacy against M. 
tuberculosis, demonstrating potential antitubercular activity [8, 9]. 

Heterocyclic molecules like isoniazid, pyrazinamide, cycloserine, 
ethionamide, and rifampin emerged as the most widely recognized 
anti-TB drugs in 1960s. However, the treatment regimen for 
tuberculosis has remained largely unchanged since then and is 
associated with significant toxic side effects and the development of 
drug resistance. FDA approval of bedaquiline in 2012 and delamanid 
in 2014 followed by the recent FDA approval of pretomanid have 
proven to be a milestone in antitubercular drug discovery [10]. 

QSAR stands for Quantitative Structure-Activity Relationship. Here, 
the biological activity of chemical compounds can be predicted or 
assessed based on their chemical structure. 

AutoQSAR applications vary in terms of the descriptors they 
automatically compute and the methods they employ, such as 
decision trees, PLS, and random forests, for generating models [11-
13]. CoMFA and CoMSIA are widely recognized as effective and 
reliable approaches in ligand-based drug discovery systems [14]. 

Here, we have worked with a set of 50 oxadiazole derivatives to 
evaluate their antituberculosis activity using both 2D and 3D QSAR 
techniques. The pMIC50 values were calculated using Density 
Functional Theory (DFT) methods. This was done to identify 
common structural features that contribute to the observed 
antitubercular activity, which can then be used to predict the activity 
of new molecules, which will further help in understanding drug 
design and molecular activity. Here, for 2D-QSAR, Auto-QSAR was 
performed on those 50 molecules of oxadiazole derivative. For 3D-
QSAR, both Atom-based QSAR and Field-based QSAR was performed 
to understand possible functional groups or features required in a 
molecule to potentiate the antitubercular activity. 

MATERIALS AND METHODS 

All the computer-based experiments conducted for this study were 
performed using the Schrodinger Maestro software version 11.8. 
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Dataset 

For this study's purpose, 50 oxadiazole derivatives have been taken 
from the available literature [15]. The structural variability and its 
correlation with a broad spectrum of biological activities provided an 
optimal data set for constructing appropriate QSAR models to forecast 
activity. The IC50 values were re-generated into PIC50 values. The 
software used for this study was MAESTRO interface [16]. 

When selecting data for 3D QSAR modelling, several key criteria are to 
be considered for ensuring the flexibility of the model [17]. Some of 
the factors include quality of data, diversity of compounds, 
appropriateness of property, data size, availability and accessibility of 
dataset. Among the set of molecules, 55% of the data were assigned to 
the training set, whereas the test set included 45% of the data. 

Alignment of molecules 

Using Ligprep module in MAESTRO, Schrodinger the energy of the 
molecules was reduced. The molecules were then aligned. The tool 
Flexible ligand alignment was employed in the molecular alignment 
process, from which Common scaffold alignment was chosen and 
entries were selected and aligned [18]. 

In the context of CoMFA and CoMSIA, the Powell method is 
employed to optimize the alignment of molecular structures and to 
calculate the field or similarity descriptors. CoMFA and CoMSIA are 
both methods in 3D QSAR studies to establish correlation between 
the biological activity of a set of molecules with their 3-dimensional 
structures and properties [19]. 

Preference of training set and test set 

Compounds are chosen from both the training and test sets in a 
manner that the training set comprises every character within the 
dataset. This is one of the crucial steps to construct a QSAR model 
[20]. 

Model development 

Phase Module was used for building 3D-Atom-based QSAR model. 
The internal test set validation was employed to validate these 
models (Leave One Out), ensuring their reliability [21]. 

CoMFA 

It is a method that is widely used for drug designing. It depicts the 
non-bonding interaction of the ligand and the receptor. CoMFA 

includes certain prime characters like steric and electrostatic forces. 
The Partial Least Square (PLS) was employed to determine linear 
correlation between CoMFA and CoMSIA. 5 factors were initially set 
[22]. 

R2 and Q2 are the statistical metrics used to evaluate the quality of 
the 3D-QSAR (three-dimensional QSAR models generated. R2 ranges 
from 0 to 1, where 1 is the perfect fit, indicating that the model 
describes all the variability. The Q2 determines the accurately 
predicts the activity of the new compounds. Q2 ranges from negative 
to 1, where the values closer to 1 demonstrates better predictive 
ability. 

Even though CoMFA provides multiple advantages, it still has few 
limitations that is why CoMSIA is regarded to be better than CoMFA.  

CoMSIA 

Comparative Molecular Similarity Indices Analysis correlates the 
biological activity with the compound's structural properties. In the 
first step of CoMSIA i. e., the field generation molecular properties of 
the fields like steric, electrostatic, hydrophobic, and hydrogen-bond 
donor/acceptor fields were calculated. And in later steps, alignment, 
grid construction and analysis were conducted. CoMSIA offers better 
and flexible grid generation. The PLS factor was set to 5 here [23]. 

Validation parameters 

In 3D QSAR, R2 is a value that provides information on how well the 
model fits the training set. Q2 is necessary of predictive measures 
and for the development of a robust model. Higher Q2 values yield a 
better predictive value. Leave one out cross-validation is one of the 
techniques that has been used in this study. 

AUTO QSAR 

Auto QSAR is the compilation workflow of several processes, such as 
descriptor generation, feature selection and model training. For this 
study, Kernel-based Partial Least Squares (KPLS) was used as it 
extends the capability of the PLS. The QSAR model generation 
involves a few steps. The process begins with the selection of the 
datasets that include chemical structures and their corresponding 
biological activity. The descriptors were generated by importing the 
structures and topological descriptors were calculated and 
computed [24]. Following to which feature selection was made and 
computation was done. Finally, the models were validated using the 
datasets.

 

Table 1: Molecules with structures for QSAR research, along with datasets, projected activities, and measured biological activities 

Compound no. Structures MIC PIC50Value Datasets 

1. 

 

1.1 9 Training 

2. 

 

5.7 8.244125 Training 

3. 

 

0.8 9.09691 Training 

4. 

 

1.1 8.958607 Test 

6. 

 

0.4 9.39794 Training 

7. 

 

0.5 9.30103 Test 

8. 

 

0.6 9.221849 Test 
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Compound no. Structures MIC PIC50Value Datasets 
9. 

 

0.6 9.221849 
 

Training 

10. 

 

0.9 9.045757 Training 

11. 

 

6.8 8.167491 Training 

12. 

 

10.8 7.966576 Training 

13. 

 

0.7 9.154902 Training 

14. 

 

5.5 8.259637 Training 

15. 

 

6 8.221849 Training 

16. 

 

4 8.39794 Training 

17. 

 

0.8 9.09691 Test 

18. 

 

1.7 8.769551 Training 

19. 

 

0.2 9.69897 Test 

20. 

 

0.7 9.154902 Training 

21. 

 

3.7 8.431798 Training 
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Compound no. Structures MIC PIC50Value Datasets 
22. 

 

7.7 8.113509 Training 

23.  4.7 8.327902 Test 

24. 

 

1.8 8.744727 Training 

25. 

 

2.8 8.552842 Test 

26. 

 

1.8 8.744727 Training 

27. 

 

8.3 8.080922 Training 

28. 

 

2.1 8.677781 Training 

29. 

 

2.3 8.638272 Training 

30. 

 

6.7 8.173925 Test 

31. 

 

7.5 8.124939 Training 

32. 

 

9.9 8.004365 Training 

33. 

 

8.3 8.080922 Test 

34. 

 

23 7.638272 Training 
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Compound no. Structures MIC PIC50Value Datasets 
35. 

 

44 7.356547 Training 

36. 

 

31.25 7.50515 Training 

37. 

 

93 7.031517 Test 

38. 

 

52 7.283997 Training 

39. 

 

12.3 7.910095 Test 

40. 

 

100 7 Training 

41. 

 

25 7.60206 Training 

42. 

 

49.9 7.301899 Test 

43. 

 

13.8 7.860121 Training 

44. 

 

99.9 7.000435 Training 

45. 

 

99.9 7.000435 Training 

46. 

 

49.9 7.301899 Training 

47. 

 

24.6 7.609065 Training 

48. 

 

6 8.221849 Training 

49. 

 

5.98 8.221849 Test 

50. 

 

5.96 8.224754 Test 
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RESULTS AND DISCUSSION 

Atom-based 3D QSAR analysis 

An ideal data set for building suitable QSAR models to forecast 
activity was offered by the structural variability and its association 
with a wide range of biological activities. A dataset of 50 molecules 

was used to create this model. The training set's 83% split was then 
maintained with PLS factor set to five. The scattered plot’s best-fit 
line was obtained. A better model with highest activity was selected 
out of 5 different molecules. The selected model had R2 of (0.979) 
and Q2 of (0.9558). Table 2 displays the atom-based QSAR data for 
the chosen model with five PLS factors. 

 

Table 2: Statistics of atom-based QSAR with five best PLS factors 

Factors SD R2 r 2cv r2 Scramble Stability F P RMSE Q2 Pearson-R 
1 0.4992 0.5114 0.4305 0.2395 0.992 84.8 3.09e-14 0.54 0.4518 0.7037 
2 0.2753 0.8532 0.636 0.3601 0.882 232.6 4.61e-34 0.36 0.7536 0.8777 
3 0.1756 0.941 0.8046 0.4434 0.914 420 1.95e-48 0.25 0.8858 0.9448 
4 0.1355 0.9653 0.8362 0.4875 0.908 542.7 4.49e-56 0.19 0.9295 0.967 
5 0.1063 0.979 0.8721 0.505 0.907 716.4 5.05e-63 0.15 0.9558 0.9797 

 

 

Fig. 1: Atom-based 3D QSAR scatter plot illustrating the relationship between observed and expected activity 
 

Each point in the plot represents a molecule, with its position indicating 
how well the predicted activity matches the observed activity. The data 

points are lying close to the diagonal line (y = x), indicating a good 
predictive model were predicted and observed activities are similar. 

 

Table 3: Results from the QSAR analysis of pharmacophoric features 

Factors H-bond donor Hydrophobic interaction Negative ionic  Positive ionic Electron withdrawing 
1 0.039151 0.629508 0.003606 0.004007 0.223044 
2 0.041603 0.630768 0.000560 0.000622 0.233347 
3 0.042138 0.614565 0.003819 0.004243 0.253473 
4 0.041169 0.613056 0.005986 0.006651 0.256295 
5 0.041491 0.603524 0.007941 0.008823 0.264063 
 

  

Hydrophobic (Compound no. 7)        Electron withdrawing (Compound no. 19) 

  

Positive ionic effect (Compund no. 4)   Negative ionic effect (Compound no. 4) 

Fig. 2: Hydrophobic/non-polar visualization 
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3D QSAR interpretation 

Table 3 illustrates the 3D QSAR analysis across electron-
withdrawing, negative, and positive ionic interactions in addition to 
hydrophobic interactions. According to established activity criteria, 
dark blue areas indicate positive activity while red portions indicate 
negative activity. The QSAR model's visual aids facilitate 
comprehension of the correlation between the biological efficacy 
and structural features of the ligand molecule as well as the effects of 
functional group substitution on activity [25, 26]. 

Interpretation of atom-based 3D QSAR 

In fig. 2. Hydrophobic (Compound no. 7), the visualization highlights the 
hydrophobic regions of Compound 7, indicating areas where non-polar 
interactions may play a significant role in its biological activity. Electron 
Withdrawing (Compound no. 19), visualization shows the electron-
withdrawing regions of Compound 19, illustrating areas where these 
properties may influence the compound's biological activity. 

Positive Ionic Effect (Compound no. 4) visualization highlights 
regions of Compound 4 areas where positively charged interactions 
could significantly impact the compound's biological activity. 
Negative Ionic Effect (Compound no. 4), illustrates regions indicating 

areas where negatively charged interactions might influence its 
biological activity. 

Visualisation and analysis of 2D QSAR 

Molecular structures and the activity patterns that correspond with 
them are comprehensively visualized using the 2D canvas in 2D 
QSAR that is linked with kernel-based Partial Least Squares (PLS). 
Effective model interpretation and prediction are made easier by 
this intuitive approach, which aids in identifying the relationships 
between molecular descriptors and biological activities [27, 28].  

The best model for correctly predicting activity was the third one, 
which showed good results on both the training and test datasets. 
Using five KPLS factors, the test set had an RMSE of 0.3733 and a Q-
squared value of 0.7163, whereas the training set had an R-squared 
value of 0.7817 and a standard deviation of 0.3433. Table 4 provides 
the statistical features of the 2D QSAR model based on fingerprints. 
The 2D QSAR fingerprint depiction of the linear model is shown in 
fig. 4, with red and blue regions denoting, respectively, positive and 
negative activity effects. The scatter plot for both the training and 
test datasets is provided. This plot illustrates the relationship 
between the predicted and actual biological activities, allowing for 
the assessment of the model's accuracy and predictive performance. 

 

   

Hydrophobic field (Compound 5)  Electrostatic field (Compound 6) 

   

Hydrogen Acceptor region (Compound 20)      Hydrogen Donor region (Compound 3) 

Fig. 3: Representation of 3D Field based QSAR 

 

 

Fig. 4: Scatter plot for both training and test dataset 
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Table 4: Observations of the models 

KPLS factors Training Test 
SD R2 RMSE Q2 

1 0.3918 0.7328 0.3626 0.7103 
2 0.3996 0.7219 0.3672 0.7029 
3 0.3433 0.7817 0.3733 0.7163 
4 0.3596 0.7678 0.3790 0.6835 
5 0.3760 0.7615 0.3870 0.6700 

 

The 2D and 3D QSAR activity results provide valuable insights for 
evaluating antitubercular activity by allowing the prediction of how 
structural variations in oxadiazole derivatives influence their 
effectiveness against TB. As evident, incorporation of Electron 
withdrawing group and hydrophobic group was found to be 
beneficial in enhancing the antitubercular activity of the oxadiazole 
derivatives. The high predictive accuracy of the models, as evidenced 
by Q² and R² values, underscores their reliability in guiding the 
design of new compounds with enhanced antitubercular properties. 

CONCLUSION 

The 3D QSAR model and 2D QSAR model were designed, and 
suitable models were generated, which were found to be useful for 
predicting the oxadiazole derivatives for the anti-TB activity. The 
given study underscores the credibility of derived QSAR model. A 
high relationship between experimental and predicted activity 
values was observed, which shows oxadiazole with many options for 
structural alterations to create possible compounds with strong anti-
TB activity and to forecast the activity of any unidentified derivative. 
The data reported by the QSAR models offers essential guidance for 
the design of new oxadiazole molecules targeting Tuberculosis. 
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