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ABSTRACT 

Objective: This study aims to identify optimal predictive models and key molecular fragments by preparing a dataset and using machine learning 
techniques within the Konstanz Information Miner (KNIME) platform. 

Methods: The human sodium-glucose cotransporter 2 (SGLT2) target dataset was obtained from the ChEMBL database and refined by removing 
salts, incomplete/incorrect data, and duplicates. The data was classified into active and inactive compounds, and fingerprints and descriptors were 
calculated. Christian Borgelt's Molecular Substructure Miner (MoSS) was employed to identify frequent molecular fragments. Following data 
partitioning, various ‘classification’ and ‘regression’ machine learning (ML) based Quantitative Structure-Activity Relationship (QSAR) models were 
developed and evaluated using different techniques, including sensitivity and mean Squared Error (MSE). 

Results: In QSAR classification, the Support Vector Machine (SVM) model demonstrated the best performance with an accuracy of 81.66%, while in 
QSAR Regression, the Extreme Gradient Boosting (XGB) model exhibited the best coefficient of determination (R2) and mean Absolute Error (MAE) 
values of 0.69 and 0.47 respectively. The identification of frequent Molecular Fragments highlighted common characteristics in active SGLT2 
inhibitors.  

Conclusion: The results of developing these QSAR models indicate that machine learning methods can be effectively used to predict SGLT2 
inhibitors virtually, thereby expediting the drug discovery process. 
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INTRODUCTION 

Sodium-glucose Cotransporter 2 (SGLT2) is a protein that plays a 
crucial role in glucose reabsorption in the kidneys [1]. SGLT2 
transports glucose from the renal tubules back into the bloodstream, 
thereby maintaining blood glucose levels. In individuals with type 2 
diabetes mellitus (T2DM), insulin resistance leads to elevated blood 
glucose levels. SGLT2 inhibitors can lower blood sugar by inhibiting 
glucose reabsorption in the kidneys and increasing glucose excretion 
through urine, which helps reduce blood glucose levels and improve 
diabetes management [2]. 

The development of SGLT2 inhibitors offers several significant 
benefits to T2DM. Their insulin-independent mechanism of action 
makes SGLT2 inhibitors effective in patients with insulin resistance 
[3]. In addition to lowering blood glucose levels, SGLT2 inhibitors 
provide additional benefits such as weight loss and blood pressure 
reduction. Clinical studies have shown that SGLT2 inhibitors can 
reduce the risk of cardiovascular events and heart failure in T2DM 
patients [4]. Therefore, SGLT2 inhibitors are an important target in 
developing more effective and comprehensive diabetes therapies. 

In addressing this challenge, computational approaches have 
become a precious tool in drug development in this field [5]. 
Computational pharmacology offers significant advantages in 
developing drugs with SGLT2 inhibitory mechanisms. One 
commonly used method is the quantitative Structure-Activity 
Relationship (QSAR). QSAR is a computational method used to 
predict the biological activity of a compound based on its chemical 
structure [6]. QSAR is an essential tool in drug discovery as it allows 
for the virtual screening of thousands of compounds, saving time 
and costs [7, 8]. 

The QSAR process aided by Machine Learning (ML) has significant 
advantages due to ML’s ability to recognize complex patterns in 
chemical data, enabling more accurate and efficient predictions 

[9–11]. One platform that can be utilized is Konstanz Information 
Miner (KNIME). KNIME is an open-source data analysis platform 
popular among computational scientists, providing an intuitive 
visual interface for building complex data analysis workflows, 
including QSAR model implementation [12]. Using KNIME, 
researchers can easily integrate various analytical tools and 
visualize the results [13]. 

In this study, validation was performed to develop an ML-based 
QSAR model to predict the activity of SGLT2 inhibitors using the 
KNIME platform. This research aims to produce accurate QSAR 
prediction models to accelerate new drug discovery and enhance 
efficiency in screening potential compounds by employing ML 
algorithms such as linear regression, decision trees, Bayesian 
principles, and neural networks. 

MATERIALS AND METHODS 

Computational methodologies 

This research was conducted at the Biomedical Computation and 
Drug Design Laboratory, Faculty of Pharmacy, University of 
Indonesia. The computational aspects were facilitated by a computer 
system equipped with an Advanced Micro Devices (AMD) Ryzen 
5900x 12-Core Processor running at GHz and 128 gigabytes (GB) of 
Random Access Memory (RAM), operating on Windows 10 Pro. The 
QSAR ML model was developed using Konstanz Information Miner 
(KNIME) version 4.11. 

Preparation 

The dataset was downloaded from the ChEMBL website, focusing on 
the human SGLT2 target and filtering for IC50 activity 
(https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL3884/) 
in CSV format. The data, selected from the ChEMBL database using 
scientific literature filters, includes 1050 compounds [14]. The data 
was then filtered to remove entries with missing activity values. 
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Molecular structures that were duplicated or used standard 
relations other than "=" were also removed. Additionally, salts were 
eliminated, and the data was classified into active and inactive 
compounds [15]. Compounds with IC50 values less than 21.1 nM 
were considered active, while those with IC50 values greater than 
21.1 nM were considered inactive [16]. The activity of each 
molecular structure (IC50) was converted into logarithmic values in 
molar units [pIC50 =-log (IC50 × 10⁻⁹)] and then sorted from largest 
to smallest based on their pIC50 values. 

Calculation of fingerprints and descriptors 

The calculation of descriptors and fingerprints is conducted using 
three nodes in KNIME. The fingerprint options utilized are RDKit 
Fingerprint (Daylight-like topological fingerprint), FeatMorgan 
(FCFP), and RDKit Descriptor Calculation [17].  

Development of ML-based QSAR model 

The dataset is partitioned into 80:20 using a stratified technique 
based on activity values for Classification and linear sampling for the 
Regression Model. 80% of the data is utilized as the training set, 
while the remaining 20% serves as the test set or External 
Validation [18]. The QSAR Classification model algorithms include 
Multi-Layer Perceptron (MLP), Naive Bayes (NB), Random Forest 
(RF), Support Vector Machine (SVM), and Extreme Gradient Boosting 
(XGB). Meanwhile, for Regression, RF, SVM, XGB, and Linear 
Regression (LR) are employed. 

Evaluation of QSAR 

The classification model in evaluating QSAR classification utilizes 
internal and external validation assessments, which include 
sensitivity, accuracy, F-value, and precision. The calculation of the 
QSAR classification evaluation is as follows:  

Sensitivity/Recall = 
TP

TP+FN
 

Specificity= 
TN

TN+FP
 

Accuracy= 
TP+TN

TP+FN+TN+FN
 

Precision (FP Rate) = 
TP

TP+FP
 

F-Value= 
2 x Recall x Precision 

Recall+Precision 
 

The evaluation of QSAR regression involves assessing the training 
results with the pre-separated 20% data. To determine the best model 
performance, we analyze the coefficient of determination (R2), mean 
absolute error (MAE), mean squared error (MSE), root mean squared 
error (RMSE), mean signed difference (MSD), and mean absolute 
percentage error (MAPE) for each machine learning algorithm. The 
calculation of QSAR regression evaluation is as follows:  

RPred
2 = 1 −  

∑(YObs −  YPred)
2

∑(YObs −  Y̅Training)
2 

MSE =
∑(YObs − YPred)

2

n
 

RMSE = √
∑(YObs − YPred)

2

n
 

Frequent molecular fragments 

Before partitioning, the dataset, which had already been 
classified into active and inactive compounds, was tested using 

Christian Borgelt's MoSS (Molecular Substructure Miner) 
implementation. This testing aimed to match active compounds 
within the data by employing specific parameters: a minimum 
support threshold of 10% to ensure substructures appear in at 
least 10% of active compounds, a maximum sub-complement 
support of 5% to limit substructures appearing in more than 5% 
of inactive compounds, a minimum fragment size of 1, and a 
maximum fragment size of 100. 

RESULTS AND DISCUSSION 

QSAR workflow of SGLT2 

The research workflow, illustrated in fig. 1, began with several key 
steps. First, Dataset preparation (W1) involved filtering compounds 
to remove duplicate, missing, and data that did not meet the 
requirements. Additionally, pIC50 values are calculated, and special 
labelling is applied to the compounds in the SGLT2 dataset. The next 
step was the Calculation of Fingerprints and descriptors (W2) using 
the RDKit node, where molecular fingerprints and descriptors are 
combined for further analysis. Following this, the dataset 
Partitioning (W3) is performed using stratified sampling for 
classification data and linear sampling for regression data. 
Subsequently, QSAR Classification (W4) is implemented using 
several ML models, including MLP, NB, RF, SVM, and XGB. The QSAR 
Regression (W5) models include RF, XGB, SVM, and LR. Finally, 
frequent molecular fragments (W6) are identified to find molecular 
fragments that frequently appear in the dataset. Each of these steps 
is carried out systematically to ensure the quality and accuracy of 
the research results [19]. 

The dataset preparation (W1) began with retrieving 1,049 
compounds targeting SGLT2 from ChEMBL. The data curation 
process involved removing compounds without test values and 
those with non-standard relation types and eliminating duplicate 
data. Additionally, compounds containing salts were removed to 
ensure precise observations. As a result, 899 compounds remained, 
with 385 identified as active, as shown in table 1. 

The acquired data were then processed to generate fingerprints 
and descriptors (W2). This study employed three types of nodes: 
RDKit Fingerprint, FeatMorgan, and RDKit Descriptor. The RDKit 
Fingerprint is a widely used topological fingerprint in the 
literature, specifically the Daylight fingerprint, which has a length 
of 2048 bits and is generated using the RDKit algorithm. 
FeatMorgan, or Extended-Connectivity Fingerprint (ECFP), also 
with a length of 2048 bits, was created using a more abstract and 
pharmacophoric set of initial atom identifiers through the circular 
fingerprint method. Additionally, the RDKit Descriptor provides up 
to 894 bits of information, including parameters such as Log P and 
TPSA [20]. 

Evaluation model QSAR classification 

The development of predictive models involved partitioning the 
dataset (W3) into training and testing data. In QSAR classification 
(W4), testing was conducted using five ML models: MLP, NB, RF, 
SVM, and XGB, which were subsequently evaluated based on 
sensitivity, accuracy, F-score, and precision, as depicted in fig. 2. The 
results indicated that the best ML models in internal validation were 
RF, SVM, and XGB. Meanwhile, in external validation, the SVM model 
performed the best, with an accuracy of 81.66% (fig. 2). Additionally, 
the data suggested that MLP and NB classification models exhibited 
poor performance, with accuracy values less than 57.22%. These 
findings underscore the effectiveness of the best model in predicting 
SGLT2 inhibitors, which is crucial in developing effective target 
therapies.

 

Table 1: Dataset of SGLT2 inhibitor 

Partition Active Inactive 
Training set 308 411 
Test Set 77 103 
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Fig. 1: QSAR SGLT2 inhibitor workflow model 

 

Evaluation model QSAR regression 

The QSAR regression model (W5) utilized four ML models: RF, XGB, 
SVM, and LR, as shown in table 2. The primary evaluation metrics 
were the coefficients of determination (R²) and mean Absolute Error 
(MAE). The results revealed that the RF and XGB models exhibited 
superior R² values compared to the other models. In internal 
validation, the R² values for RF and XGB were 0.91 and 0.95, 
respectively, while in external validation, they were 0.67 and 0.69, 
respectively. These R² values illustrate the model’s ability to explain 
the variability [21] (table 2). 

Furthermore, the mean Absolute Error (MAE) was used to evaluate 
the average prediction error. The results indicated that the RF and 
XGB models exhibited the smallest MAE values in external 
validation, with values of 0.49 and 0.47, respectively. Lower MAE 
values indicate smaller prediction errors and better model 
performance. The best model in this study was determined based on 
external validation results, considering both R² and MAE values. The 
XGB model was selected as the best model due to its highest R² value 
and smallest MAE compared to the other models [22]. These findings 
suggest that the XGB model demonstrates superior predictive ability 
in the context of external validation. 
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Fig. 2: Results of QSAR classification validation 

 

Table 2: Evaluation of QSAR regression model 

ML R^2 MAE MSE RMSE MSD MAPE 
RF External 0.67 0.49 0.45 0.67 0.03 0.07 

Internal 0.95 0.19 0.07 0.27 0.01 0.03 
LR External 0.50 0.58 0.68 0.82 -0.03 0.08 

Internal 0.99 0.00 0.01 0.08 0.00 0.00 
SVM External 0.51 0.58 0.67 0.82 0.08 0.09 

Internal 0.81 0.31 0.25 0.50 0.06 0.05 
XGB External 0.69 0.47 0.43 0.66 -0.03 0.07 

Internal 0.91 0.25 0.11 0.34 -0.01 0.03 

Mean absolute error (MAE), Mean squared error (MSE), Root mean squared error (RMSE), Mean signed difference (MSD) and mean absolute 
percentage error (MAPE) 

 

Frequent molecular fragments 

The results of the MoSS analysis indicate the frequency of fragments 
in the dataset. Testing was conducted by comparing active and 
inactive compounds based on their frequencies. One hundred 
thirteen fragments were obtained, with several structures displaying 

the highest values in table 3. These fragments appear with higher 
frequency in SGLT2 inhibitors compared to non-inhibitors. The 
structure of SGLT2 inhibitor drugs has four main parts: 1) glucose 
ring, 2) central benzene ring, 3) methylene bridge, and 4) distal 
benzene ring, as shown in fig. 3. Some approved drugs include 
Dapagliflozin (IC50 1.1 nM) and Canagliflozin (2.2 nM) [23, 24]. 

 

 

Fig. 3: Structure of SGLT2 inhibitor [23] 

 

Dapagliflozin is the first drug for SGLT2 inhibition, featuring a 
glucose moiety at position 6, which binds to a central benzene ring 
substituted with chlorine at the para position (R3). This central 
benzene ring is linked to a methylene bridge and a distal benzene 
ring with an ethoxy group (OCH2CH3) at R4. Clinical trials have 

shown that dapagliflozin can reduce HbA1C levels by an average of 
1.2% [25]. The MoSS analysis conducted in KNIME shows 
similarities between approved drugs and the MoSS findings, 
suggesting potential structural motifs associated with SGLT2 
inhibition efficacy. 
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Table 3: Frequent molecular fragments 

No Fragment Atom count Bond count Support in focus (abs) Support in complement (abs) 
1 

 

336 0 0.87 0 

2 

 

336 0 0.87 0 

3 

 

318 0 0.83 0 

4 

 

284 0 0.74 0 

5 

 

266 0 0.69 0 

6 

 

266 0 0.69 0 

7 

 

265 0 0.69 0 

8 

 

248 0 0.64 0 

9 

 

247 0 0.64 0 

10 

 

236 0 0.61 0 

 

CONCLUSION 

The study used five machine learning models for QSAR Classification 
and four models for QSAR Regression to predict the inhibitory 
potential of SGLT2. The SVM model showed the highest accuracy of 
81.66% in QSAR Classification. In QSAR regression, XGB showed the 
best R2 and MAE values, with 0.69 and 0.47, respectively, in external 

validation. Using frequently occurring Molecular Fragments helped 
identify common characteristics in active compounds as SGLT2 
inhibitors. The results suggest that machine learning methods can 
effectively predict SGLT2 inhibitors, which could speed up the drug 
discovery process. These findings could pave the way for further 
advancements in this field and contribute to more efficient drug 
discovery efforts. 
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