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ABSTRACT  

Objective: This study has been carried out with an in silico approach to predict interactions between drug candidates and receptor COX-2 (5IKT) 
and analysed the Molecular Dynamic (MD) simulation. 

Methods: The docking procedure was executed with the MolDock algorithm, which was incorporated into Molegro Virtual Docker 5.0, employing 
the specific docking strategy. MD simulation was analysed with GROMACS 2019 for a duration of 50 nanoseconds. A graph is used to illustrate the 
interpretation of MD, depicting the Root mean Square Deviation (RMSD) on the backbone, the RMSF on C-alpha, and the Solvent-Accessible Surface 
Area (SASA) on the protein. This is accomplished via the qtGrace program. 

Results: Pyrazoline C and M were used as ligands and celecoxib as a commercial drug. Pyrazoline M was the ligand with the highest affinity (-
103.463 Kcal/mol) if compared with Pyrazoline C (-100.900 Kcal/mol), native ligand tolfenamic acid (-87.588 Kcal/mol) and celecoxib (-95.832 
Kcal/mol). The molecular dynamics simulation for 50 ns was showed that RMSD, RMSF and SASA rigid and stable. 

Conclusion: Pyrazoline C and M was the potential to develop as a breast cancer drug with COX-2 inhibitory activity. 
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INTRODUCTION  

Breast cancer ranks as the second most prevalent form of cancer 
among women, behind cervical cancer. The primary factors that 
influence the occurrence of breast cancer are changes in lifestyle and 
dietary habits [1, 2]. Breast cancer often demonstrates an excessive 
expression of Cyclooxygenase-2 (COX-2). Multiple studies have shown 
that COX-2 is excessively produced in various types of cancerous 
tumors in humans. These studies indicate that metabolites originating 
from COX-2 may play a role in promoting tumor survival, stimulating 
the excessive growth of precancerous cells, facilitating the formation 
and advancement of tumors, inducing cell transformation, facilitating 
the invasion of neighboring tissues, and promoting the metastasis of 
cancer to other regions of the body. Pyrazoline derivatives are 
nitrogenous chemical compounds classified as heterocyclic 
compounds. These compounds display a variety of biological activity. 
Pyrazoline derivatives have demonstrated anti-cancer efficacy against 
breast cancer, hepatocellular carcinoma, lung cancer, and breast 
cancer cells [3-6]. Pyrazoline derivatives have been studied in many 
cancer cell lines and have demonstrated the ability to inhibit cell 
proliferation and induce programmed cell death. Prior studies have 
demonstrated that our synthetically produced N-phenyl pyrazolines 
possess anti-cancer characteristics that particularly target cells 
associated with breast cancer and colorectal cancer [2, 7-9]. The aim of 
this study was to investigate the effectiveness of N-pyrazoline 
derivative chemicals in inhibiting the production of COX-2, a key 
player in the metastasis of cancer. 

MATERIALS AND METHODS 

Ligand 3D preparation 

The molecular docking process was carried out using an Aspire 
Vivobook running on Windows 7 Home Basic. The laptop was 

equipped with an Intel® CoreTM i5 processor clocked at 3.4 GHz, 
64-bit architecture, a 320 GB hard disc drive, and 4 GB DDR3 l RAM. 
The chemicals Pyrazoline C and Pyrazoline M were shown in their 
2D structures using the ChemDraw 18.1 software. Then, the 2D 
structure is converted into a 3D structure using the chem3D 18.1 
application by performing energy minimization (perform MMFF94 
minimization) and saving in SDF format [10, 11]. 

Docking analysis 

The 3D conformation of the chosen target proteins was obtained 
from the RSCB PDB database (https://www.rcsb.org/) for COX-2 
(PDB ID: 5IKT), whilst the 3D arrangement of the reference ligand 
employed was taken from the Pubchem database 
(https://pubchem.ncbi.nlm.nih.gov/). In addition, the re-docking 
process was performed via the MolDock algorithm, a particular 
docking approach that is incorporated into Molegro Virtual Docker 
5.0. The grid box size corresponds to the control ligand (native 
ligand) that has been attached to the PDB protein [12, 13]. 

Molecular dynamics simulation 

The protein and ligand were generated using GROMACS 2019, 
specifically through topological protein preparations utilizing the 
pdb2 gmx tool. The protein force field used is AMBER99SB. Acpype 
is utilized to ascertain the ligand's topology. Furthermore, the 
procedure encompassed the incorporation of protein and ligand 
structure, solvent inclusion, ion incorporation, stabilization, 
optimization, and the implementation of molecular dynamics 
simulations. The MD manufacturing process lasted for a duration of 
50,000 picoseconds, which is comparable to 50 nanoseconds. The 
graph illustrates the MD interpretation by displaying the RMSD on 
the backbone, RMSF on C-alpha, and SASA on the protein. The 
utilization of the qtGrace software facilitates this process [14, 15]. 
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Ligand Interaction  

Van der waals Hydrogen conventional Hydrogen carbon Hydrophobic Other Unfavorable 
Tolfenamic acid  A: TYR348 

A: PHE381 
A: TRP387 
A: LEU384 
A: GLY526 
A: MET522 
A: SER353 
A: TYR355 
A: ARG120 

A: TYR385 
A: SER530 

 A: ALA527  
A: VAL349 
A: LEU531 
A: VAL116 
A: VAL523 
A: LEU352 

  

Pyrazoline C A: TYR385 
A: PHE381 
A: SER530 
A: LEU531 
A: ARG120 
A: GLN192 
A: ILE517 
A: HIS90 
A: ARG513 
A: PHE518 
A: MET522 
A: TRP387 
A: LEU384 

 A: VAL523 A: GLY526 
A: SER353 
A: LEU352 
A: VAL349 
A: TYR355 
A: LEU359 
A: ALA527 
A: VAL523 
 

 A: VAL116 

Pyrazoline M A: VAL116 
A: ARG120 
A: LEU359 
A: TYR355 
A: ARG513 
A: HIS90 
A: PHE518 
A: TRP387 
A: LEU384 
A: TYR385 
A: PHE381 

 A: VAL523 
A: SER530 

A: SER353 
A: GLY526 
A: VAL349  
A: ALA527  
A: LEU352 
A: VAL349 
A: LEU531 
A: VAL523 

A: MET522  

Celecoxib A: MET522 
A: PHE381 
A: LEU384 
A: TYR385 
A: TYR348 
A: SER530 
A: PHE518 
A: ILE517 
A: ALA516 
A: GLN192 
A: ARG513 
A: TYR355 
A: LEU359 

 A: GLY526 A: LEU531 
A: VAL349 
A: VAL116 
A: ALA527 
A: LEU352 
A: VAL523 
A: HIS90 
A: SER353 

A: ARG120 
A: TRP387 

 

Fig. 1: Visualization of docking results, a) COX2-control protein, b) COX2-pyrazoline C protein, c) COX2-pyrazoline M protein, d) COX2-
celecoxib protein. The left part shows the 3D visualization and the right part shows the type of bond produced between the ligand-protein 
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RESULTS AND DISCUSSION 

COX-2 protein docking analysis 

Molecular docking is a computer approach to monitoring the 
formation of stable protein-ligand complexes in a protein's active 
region [16, 17]. The control RMSD results are in accordance with the 
standard, which is less than 2.0 Å [18]. The results of molecular 
docking of COX-2 protein (ID: 5IKT) with test compounds showed 
that two pyrazoline compounds (pyrazoline C and M) had a stronger 

binding affinity value than the control ligand Tolfenamic acid [12] 
and the commercial drug Celecoxib (table 2). 

Furthermore, fig. 1 shows the interactions between each ligand and 
the COX-2 protein. The van der Waals and hydrophobic bonds are 
the most dominant. Residues with bold fonts are amino acid 
residues from the control retained by the sample. The analysis 
showed that Pyrazoline C and M respectively formed the same 9 and 
11 amino acids as the control. In comparison, Celecoxib as a 
commercial drug formed the same 10 amino acids as the control. 

 

Table 1: The grid box settings used are as follows 

Protein X Y Z Radius RMSD Re-docking Binding affinity (kcal/mol) 
5IKT 165.42 185.73 192.38 8 0.93 -87.5877 

 

Table 2: Binding affinity between COX-2 protein and test compounds 

Compounds Binding Affinity (kcal/mol) RMSD (Å) 

Tolfenamic acid  -87.588 0.93 
Pyrazoline C -100.900 0.02 
Pyrazoline M -103.463 1.09 
Celecoxib -95.832 0.02 

Pyrazoline M exhibits superior COX-2 inhibitory activity compared to Pyrazoline C, tolfenamic acid, and celecoxib, as indicated by the results. The 
connection between the ligand and protein with the lowest energy exhibits superior inhibitory action [19].  

 

Molecular dynamics simulation 

Root mean square deviation (RMSD) 

A Molecular Dynamics Simulation was conducted for a duration of 
50,000 picoseconds to assess the stability of COX-2 during its interaction 
with various test chemicals, including celecoxib, Pyrazoline C, Pyrazoline 
M, and tolfenamic acid. The results from MD simulations show that the 
native protein exhibits a RMSD of around 0.19 nm. Meanwhile, the COX-2 
exhibited a slight drop in the RMSD value after its interaction with the 
test chemicals celecoxib, Pyrazoline C, Pyrazoline M, and tolfenamic acid, 
with scores of 0.17 nm, 0.15 nm, 0.17 nm, and 0.18 nm respectively (fig. 
2). Although there was a drop in the RMSD value, the rise was not 
substantial, measuring less than 1 nm. 

Root mean square fluctuation (RMSF) 

We conducted for analysis on the flexibility of the COX-2 enzyme and 

its interactions with the test substances, as shown in fig. 3. The 
RMSF of the COX-2 value decreases while interacting with 
tolfenamic acid, celecoxib, Pyrazoline C, and Pyrazoline M 
compounds compared to COX-2 without a ligand. The RMSF score is 
in agreement with the RMSD score [20]. 

Solvent-Accessible Surface Area (SASA) 

The COX-2 compounds lacking a ligand have a surface area of 
245.22 nm2, as determined by the SASA measurement. During the 
interaction between the SASA COX-2 and the test chemicals 
celecoxib, Pyrazoline C, Pyrazoline M, and tolfenamic acid, there 
was a minor change in the surface area of 247.74 nm2, 249.84 
nm2, 246.22 nm2, and 244.19 nm2, respectively. Nevertheless, 
this increment is really minimal. An elevation in the SASA value 
signifies a corresponding rise in the availability of the COX-2 
surface (fig. 4) [21]. 

 

 

Fig. 2: Root mean square deviation kinase domain of COX-2 when interaction with celecoxib, Pyrazoline C, Pyrazoline M and 
tolfenamic acid 
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Fig. 3: Root mean Square Fluctuation kinase domain of COX-2 when interaction with celecoxib (a), Pyrazoline C (b), Pyrazoline M (c), 
tolfenamic acid (d) 

 

  
a B 

  
c d 

Fig. 4: Solvent-accessible surface area HER-2 when interaction with celecoxib (a), Pyrazoline C (b), Pyrazoline M (c), tolfenamic acid (d) 
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CONCLUSION 

Based on these results, Pyrazoline M was the potential to develop as 
a breast cancer drug with COX-2 inhibitory activity. 
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