
5th International Current Breakthrough in Pharmacy (ICB-Pharma) 2024, Indonesia                 | 31  

Original Article 

LITERATURE STUDY: INTERACTION BETWEEN NATURAL ANTIOXIDANT COMPOUNDS IN 
TROPICAL FRUITS 

 

ARDITA T. RAHMASARI, PRAMUDYA KURNIA* 

Nutrition Science Study Program, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta (UMS), Surakarta, Indonesia 
*Corresponding author: Pramudya Kurnia; *Email: pk212@ums.ac.id 

Received: 06 May 2024, Revised and Accepted: 02 Sep 2024 

ABSTRACT 

Objective: This study aims to analyze selected articles on interactions in binary combinations of vitamin c, phenolic compounds, flavonoids, and 
carotenoids. 

Methods: The method used in this research is a literature study approach through the Google Scholar database with the last 10 years (2013 – 2023) 
of research articles. The selected journals are internationally reputable with Scopus index Q1-Q4 and the results of experimental research. 

Results: The analysis of the six selected articles showed synergistic interactions in the combination of vitamin c with phenolics, vitamin c with 
carotenoids, phenolics with flavonoids, phenolics with carotenoids, and flavonoids with carotenoids. However, antagonistic interactions can also 
occur in some of these combinations and the combination of vitamin c with flavonoids. This is influenced by several factors, such as the type of 
antioxidant compound derivative, variation in concentration ratio, differences in oxidation potential and antioxidant bond dissociation energy. 

Conclusion: Overall, binary combinations of antioxidants result in different interactions. This is influenced by several factors. However, the lack of 
research articles on the combination of these antioxidant binary compounds means that it is not known exactly how the mechanism of interaction in 
these combinations can occur. 
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INTRODUCTION 

Fruit is known to contain vitamins, minerals, fiber, and 
phytonutrients as color providers as well as natural antioxidants [1]. 
These phytonutrients play an important role in regulating 
maintenance and growth, as well as reducing the risk of 
degenerative diseases [2]. Antioxidants play a role in counteracting 
the negative effects of oxidants by donating one electron to oxidant 
compounds that inhibit their activity [3]. One of the roles of 
antioxidants is the excellent anticancer effect against hepatocellular 
carcinoma and A549 lung adenocarcinoma [4, 5]. Other studies have 
also shown that some flavonoid compounds, such as naringenin and 
kaempferol can provide treatment effects against type 2 diabetes [6]. 

These antioxidant compounds can cause interactions when 
combined either binary (2 compounds) or ternary (3 compounds). 
There are 3 interactions resulting from the combination of 
antioxidant compounds, namely synergistic, additive, and 
antagonistic interactions [7]. Synergistic interaction is an interaction 
resulting from the combination of two or more antioxidant 
compounds that complement each other and even optimize their 
efficacy. An example of synergistic effect is shown in the 
combination of vitamin c and β-carotene in reducing leukoplakia 
malignancy rate by 17.4% [8]. In contrast to additive interactions, 
this interaction occurs in the combination of two or more 
antioxidant compounds of different types, but the antioxidant 
interactions that arise occur separately. This effect is shown in the 
combination of phenolic compounds (gallic and ferulic acids) based 
on the results of the free radical cation scavenging process through 
the ABTS (2, 2-Azinobis (3-ethylbenzatiazolin_6-sulfonic acid) test 
[9]. Meanwhile, antagonistic interactions, namely interactions in the 
combination of antioxidant compounds that can result in the 
weakening of one or both compounds or even provide toxicity 
effects in the body [7]. For example, in the combination of vitamin c 
and quercetin, which causes the weakening of quercetin by vitamin c 
due to differences in oxidation potential, while vitamin c is 
regenerated [10]. 

The selection and combination of tropical fruits as an appropriate 
source of natural antioxidants needs to be known in order to 

optimize their utilization in the body. Unfortunately, information 
related to the interaction between antioxidant compounds is still 
very minimal, so this underlies the literature study research so that 
it is expected to provide and add information about the interaction 
between natural antioxidant compounds. 

MATERIALS AND METHODS 

The method in this study uses a literature study approach or 
literature study on Scopus-indexed international journal articles 
(Q1-Q4) with a search engine using 
https://www/scimagojr.com/, through the Google Scholar 
database (www.scholar.google.com) with the keywords inter-
action between vitamin c and phenolic compounds, interaction 
between vitamin c and flavonoids compounds, interaction 
between vitamin c and carotenoid compounds, interaction 
between phenolic and flavonoid compounds, interaction 
between phenolic and carotenoid compounds, and interaction 
between flavonoid and carotenoid compounds. The journal 
articles used in this study were articles that met the inclusion 
criteria and, were published within the last 10 y (2013-2023) 
and were relevant to the research objectives. 

RESULTS AND DISCUSSION 

Tropical fruits as a source of natural antioxidants 

Fruit is a plant that can be consumed in the pulp [11]. The content of 
natural antioxidants in tropical fruits such as vitamin c, phenolics, 
flavonoids, and carotenoids can have a health-enhancing effect on 
the body [12]. 

Based on the literature in table 1, it can be seen that tropical fruits 
contain many natural antioxidants. Phenolics are found in the form 
of gallic acid, vanillic acid, ferulic acid, rosmarinic acid, chlorogenic 
acid, curcumin, carnosic acid and caffeic acid [46]. While flavonoids 
are found in the flavonol class (quercetin, rutin, quercetrin and 
galangin), flavones (luteolin), epicatechin, epigalocatechin gallate, 
hesperetin, ferulic acid, and anthocyanidins (anthocyanins) [47]. In 
addition, carotenoids in tropical fruits are found in the form of 
lycopene, lutein, astaxanthin, β-carotene, and others [48]. 
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Fig. 1: Flow of article search 

 

Table 1: Antioxidant content of selected tropical fruits 

Fruit Type Vitamin c Phenolics Flavonoids Carotenoids Reference 

Avocado 1, 201 410, 202 21, 901 0, 861 [13] 
Papaya 46, 891 60, 402 38, 121 0, 565 [14, 15] 
Lemon 35, 2-56, 711 730, 46-825, 371 216, 61-219, 271 15, 66-20, 771 [16, 17] 
Oranges 61, 381 123, 022 1, 411 111 [18, 19] 
Ambon Banana 721 1, 89-29, 282 1, 45-133 0, 31-22, 885 [20, 21] 
Tomato Fruit 22, 61-32, 211 1.992-2.1782 194-3473 8, 84-17, 496 [22] 

Star fruit 351 161, 562 723 1, 131 [23, 24] 
Pomegranate 54-105, 21 1.820-2.4502 170-3203 21-321 [25] 
Pineapple 37, 791 902 803 0, 161 [26, 27] 
Guava 67, 481 1.2642 232, 064 12, 496 [28] 
Soursop 62, 421 160, 282 87, 173 0, 741 [15, 29] 
Mango 231-4191 69, 932 3, 211 3, 44-14, 835 [30, 31] 

Longan 43, 12-1631 582 97 0, 021 [32, 33] 
Durian 18, 87-25, 131 690, 62-998, 292 211, 36-220, 347 0, 05-0, 081 [34, 35] 
Passsion Fruit 5, 1-9, 71 27, 9-49, 12 2, 9-57 5-18, 15 [36] 
Jackfruit 56-871 1.1782 683 0, 04-0, 051 [37, 38] 
Mangosteen 2, 781 225, 782 0, 053 - [39, 40] 
Watermelon 1.43-10, 171 3, 9-7, 42 3, 51-7, 763 1.0805 [41, 42] 
Rambutan 56, 371 483, 722 23, 373 - [43, 40] 

Red Dragon 5.118-5.3761 53, 22 3, 433 0, 211 [44, 45] 

Units: 1 mg/100g, 2 mg GAE/100g, 3 mg QE/100g, 4 mg rutin/100g, 5 g BE/100g, 6 mg lycopene/100g, 7 mg CE/100g 

 

Interaction between vitamin c and phenolic 

Phenolic is one of the components that are part of the system of 
components in food ingredients, which allows for interaction with 
other components, such as vitamin c. A study observed the 
interaction of phenolic components in ginger extract combined with 
vitamin c. Ginger has a high phenolic content of 62.51 mg GAE/g dry 
weight with antioxidant activity (Antioxidant Index %) of 53.01-
87.16%. Response Surface Methodology (RSM) analysis results 
showed a positive effect (P=0.0002) indicating an antagonistic 
interaction in the binary combination. The combined DPPH assay 
results also showed an increase in absorbance and a decrease in 
antioxidant activity [52]. This antagonistic interaction is thought to 
occur due to the presence of weak antioxidants that are regenerated 
by other stronger antioxidants, as well as the nature of vitamin c, 

which is easily oxidized and turns into a prooxidant agent, thus 
triggering an antagonistic interaction [55, 56]. Another study also 
showed an antagonistic interaction in the combination of vitamin c 
with phenolics, especially curcumin as evidenced by the CI 
(Combination Index) value in the binary combination of 1.9 (CI>1) 
[57]. The same thing also occurred in the combination of vitamin c 
with 5-caffeoylquinic acid with a ratio of 1:2 characterized by a 
decrease in antioxidant activity. However, different results were 
found in the 2:1 ratio, which actually showed a synergistic 
interaction characterized by an increase in antioxidant activity [58]. 
This suggests that the difference in antioxidant concentration ratio is 
one of the determining factors for the interaction that can occur in a 
combination. Unfortunately, it is not yet known exactly why there is 
a difference in the resulting interaction based on the difference in 
the ratio of the binary compound combination. 
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Table 2: Extraction data of selected journal articles 

Author Methods Antioxidant 
combination 

Results Interaction Reference 

Zhang, J. Y., Lin, M. 
T., Zhou, M. J., Yi, T., 
Tang, Y. N., Tang, S. 
L., Yang, Z. J., Zhao, 
Z. Z., dan Chen, H. B. 

MTT Assay Phenolic 
(curcumin) 
and 
Flavonoids 
(quercetin) 

The combination of 10.0 μM quercetin+5.0 μM curcumin and 
10.0 μM quercetin+10.0 μM curcumin can inhibit the growth of 
MGC-803 gastric cancer cells, respectively by 76.99%±3.06% and 
84.37%±4.99. In addition, the combination of 10.0 μM 
quercetin+5.0 μM curcumin also showed an apoptosis rate of 
47.1%±2.4%. 

Synergistic [59] 

Charlotte, S. Y., 
Dangels, O., Borel, 
P., dan Veyrat, C. C. 

ROS 
Level Assay 
and UV-VIS 
Spectroscopy 

Phenolics 
(chlorogenic 
acid) and 
Carotenoids 

The combination of phenolics (chlorogenic acid) and carotenoids 
synergized in inhibiting peroxidation by MbFeIII with a decrease 
in absorbance. The combination of these binary compounds can 
reduce the level of linoleic acid peroxidation at pH 5.8 and 4, by 
118.5% and 101.6%, respectively. 

Synergistic [67] 

Levy, R., Okun, Z., 
dan Shpigelman.  

HPLC Vitamin c and 
Flavonoids 
(anthocyanins) 

The combination of vitamin c with Cyanidin-3-O-β-Glucoside and 
Cyanidin-3-Glucosyl-Rutinoside significantly increased 
degradation (p<0.05) characterized by a significant decrease in 
anthocyanin residue<6% compared to control. The rate of 
degradation was in line with the increase in storage temperature. 
Storage of the binary compound combination at 37 °C increased 
the degradation rate significantly (p<0.05). 

Antagonist [52] 

Singprecha, A., 
Yarovaya, L., dan 
Khunkitti, W.  

DPPH dan 
Response 
Surface 
Methodology 
(RSA)  

Vitamin c and 
Phenolic 

Ginger extract has a high total phenolic content of 62.51 mg 
GAE/g dry weight, indicating strong antioxidant activity (53.01-
87.87.16%). Response Surface Methodology (RSA) results showed 
an antagonistic interaction between total phenolics in ginger 
extract and ascorbic acid, characterized by an increase in 
absorbance and a decrease in antioxidant activity. 

Antagonist [47] 

Oh, S., Kim, Y. J., 
Lee, E. K., Park, S. 
W., dan Yu, H. G.  

DPPH dan 
DCFH-DA 
Intracellular 
ROS Level 
Assay 

Vitamin c and 
Carotenoids 
(astaxanthin) 

The combination of 20 µM astaxanthin and 90 µM ascorbic acid 
can reduce the level of Reactive Oxygen Species (ROS) up to 
104%. The combination of the two showed a synergistic 
interaction with better antioxidant activity than each component. 
In addition, this combination also increased the viability value of 
ARPE-19 cells that had been treated with H O22 by 129%. 

Synergistic [56] 

Chen, X., Zheng, L., 
Zhang, B., Deng, Z., 
dan Li, H. 

Flow-
cytometry 
dan SIRT1 
Enzymatic 
Assay 

Flavonoids 
(quercetin) 
and 
Carotenoids 
(Lycopene) 

The combination of lycopene: quercetin (1:5) (M2) synergized in 
reducing NoX4 expression by 3.5-fold compared to the control. In 
addition, this combination also has a strong synergistic effect in 
inhibiting the expression of phosphorylated p65, as well as 
maintaining the stability of SIRT1 up to 57 °C. 

Synergistic [71] 

 

Interaction between vitamin c and flavonoids 

A study was conducted to determine the stability of anthocyanins in 
the presence of vitamin c. It was found that the results of analysis 
using HPLC after 6 h showed a drastic decrease in the peak area of the 
vitamin c chromatogram in the anthocyanin solution at an absorbance 
of 270 nm compared to the control solution (only vitamin c). This 
indicates the degradation of anthocyanins combined with vitamin c. 
The results of stability testing of Cyanidin-3-O-β-Glucoside and 
Cyanidin-3-Glucosyl-Rutinoside with the combination of vitamin c 
experienced a significant increase in degradation (p<0.05), with a 
residual concentration of<6% after 146 h, while in the control sample 
(only vitamin c) the residual concentration was 77%. In addition, an 
increase in the storage temperature of both combinations is in line 
with the increase in the value of the degradation rate constant, thus 
accelerating the anthocyanin degradation process (p<0.05) [51]. 

Another study also revealed that the combination of vitamin c with 

anthocyanins can increase the brightness of pigments and reduce 
the chroma in pigments. In addition, it is known that the half-life of 
Cyanidin-3-galactoside is 546 h, 5-carboxypyranocyanidin-3-
galacoside is 978 h, while the combination of both with vitamin c has 
a half-life of 8 and 64 h, respectively. This decrease in half-life 
indicates that there is a significant decay of both anthocyanin 
compounds [59]. The longer the half-life obtained from a compound, 
the smaller the decay constant value [60], so the presence of vitamin 
c can certainly increase the decay of anthocyanin pigments. The 
binary combination can also decrease the chroma value as the 
vitamin c content increases after 48 h. Both anthocyanin pigments 
combined with vitamin c experienced significant changes in chroma 
value over 5 d (p<0.001). The impact of bleaching anthocyanin is 
believed to be a result of the electrophilic nature of vitamin c and 
attacks carbon-4 (C4) and the condensation of vitamin c, which 
results in the loss of conjugation in the C-ring so that the original 
color expression of the pigment decreases [59]. 

 

Table 3: FRAP test results and mixture effect (ME) value for the combination of vitamin c and flavonoids 

Component/combination FRAP value ME value 
0.1 mmol Vitamin c+0.1 mmol Quercetin 0.346 0.77 

0.1 mmol Vitamin c+0.1 mmol Ferulic acid 0.264 1.13 
0.1 mmol Vitamin c+0.1 mmol Hesperetin 0.054 0.39 

Source: [10] 

 

From the results of Ferric Reducing Antioxidant Power (FRAP) 
testing at 620 nm absorbance and Mixture Effect (ME) table 3, it is 
known that the combination of vitamin c with quercetin and 
hesperetin show an antagonistic interaction because the FRAP value 
increases and the ME value<1. This antagonistic interaction occurs 
because quercetin regenerates oxidized vitamin c and vitamin c 

regenerates hesperetin. Based on their oxidation potential, 
antagonistic interactions occur due to the regeneration of 
compounds with higher oxidation potential at the expense of 
compounds with lower action potential through the donation of H 
atoms [61]. On the other hand, the combination of ferulic acid and 
vitamin c showed an increase in FRAP value but had an ME value>1, 
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so the interaction of the binary compound combination cannot be 
confirmed and further studies are needed to clarify the resulting 
interaction. The difference in interaction in the combination of 
vitamin c and flavonoids is thought to occur due to differences in the 
type of derivative antioxidants combined and is one of the factors 
determining the interaction in a combination. 

Interaction between vitamin c and carotenoids 

Vitamin c and carotenoids have the same role as antioxidants. A 
study was conducted to determine the effect of vitamin c and 
astaxanthin intervention on Adult Retinal Pigment Epithelial (ARPE-
19) cells that experience oxidative stress. It is known that giving a 
combination of 20M astaxanthin and 90M vitamin c produces an 
ARPE-19 cell viability value of 129% and reduces the level of ROS to 
reach 104% (much lower than the control, which is 200%) [53]. This 
shows synergistic interactions in increasing the probability of cells 
to be able to live after exposure to a material, namely H2O2, which is 
oxidative, and reducing the level of highly reactive ROS, in line with 
the increase in viability values in ARPE-19 cells. The decrease in the 
level of ROS occurs due to an increase in the phagocytic capacity of 
neutrophils so as to reduce the production of pro-inflammatory 
cytokines, as well as the protective effect against free radicals on cell 
membranes and neutralize them in the nonpolar area of 
phospholipid aggregates by astaxanthin [62]. 

Vitamin c also interacts synergistically with lycopene as an anti-
inflammatory agent. The occurrence of inflammation is expressed by 
the production of pro-inflammatory cytokines such as Tumor 

Necrosis Factor Alpha (TNF-α) and Interleukin-8 (IL-8), which can be 
suppressed through compounds that are hydrophilic, lipophilic, and 
a combination of both, in this case, vitamin c and lycopene. This 
binary combination also significantly stimulated the expression of the 
anti-inflammatory cytokine gene Interleukin-10 (IL-10) and inhibited 
NFkB gene expression (P≤0.05). A study evaluating the potency of 
tomato sauce extract and its bioactive components on endothelial cell 
cultures or Human Umbilical Vei Endothelial Cell (HUVEC). HUVEC cells 
that had been treated with IL-8 and experienced inflammation were 
then intervened with tomato sauce extract combined with vitamin c 
and lycopene. This combination showed an effective decrease in 
monocyte chemotaxis by 69±4%, followed by a decrease in IL-8 
concentration in HUVEC cells as a sign that there was a decrease in 
pro-inflammatory cytokine production [63]. 

The combination of vitamin c with carotenoids, especially 
astaxanthin and lycopene, with a certain ratio, shows a synergistic 
interaction. However, further studies are needed to determine the 
combination of vitamin c with other types of derived carotenoids 
and different ratios to determine the combination interactions that 
can occur. 

Interaction between phenolic with flavonoids 

A study combined curcumin and quercetin to determine the effect on 
MGC-803 gastric cancer cells. Both have IC50 values of 9.32±1.06 μM 
and 23.35±2.14 μM, respectively, so the combination of the two 
works synergistically as an anti-cancer by inhibiting the growth of 
MGC-803 gastric cancer cells by increasing apoptosis in cells [49]. 

 

Table 4: Test results of combination levels in inhibiting growth and apoptosis of MGC-803 gastric cancer cells 

Component/combination % Growth inhibition Apoptosis rate  
10.0 µM quercetin+5.0 µM curcumin 76.99%±3.06% 47.1%±2.4% 
10.0 μM quercetin+10.0 μM curcumin 84.37%±4.99 - 

Source: [59] 

 

Apoptosis of MGC-803 cancer cells in table 4. Above significantly 
occurred in the combination of 10.0 µM quercetin and 5.0 µM 
curcumin. Apoptosis can be induced through intrinsic and extrinsic 
pathways. The intrinsic pathway is mediated by mitochondria, 
where when chemotherapy drugs enter the body, it will change the 
nature of the mitochondrial membrane and the release of 
cytochrome C as a biochemical sign of apoptosis [64]. This intrinsic 
apoptosis mechanism is also explained in this study. Intrinsic 
apoptosis testing of MGC-803 cells with a combination of 10.0 μM 
quercetin and 5.0 μM curcumin for 24 h showed a level of 
change/decrease in mitochondrial membrane properties to reach 
48.14%±3.08%, thus increasing the occurrence of apoptosis of MGC-

803 cancer cells (p<0.05) [49]. Curcumin can modulate various 
molecular targets, including transcription factors and cell growth, 
cytokines, enzymes, and genes that regulate cancer cell proliferation 
and apoptosis [65]. The level of apoptosis produced by quercetin is 
not more significant than curcumin. However, curcumin has a low 
level of bioavailability due to low water solubility so that its role as 
an anticancer agent cannot work optimally [66]. Quercetin has a role 
in increasing the bioavailability of curcumin by increasing its uptake 
into human carcinoma cells so that both work synergistically in vitro 
in inhibiting phosphorylation and inducing apoptosis of MGC-803 
gastric cancer cells through the intrinsic pathway (mitochondrial 
pathway) [67]. 

 

Table 5: Synergy effect of phenolic and flavonoid binary combination based on FRAP testing 

Combination Concentration ratio (µM) Interaction (%) 
Gallic Acid+Quercetin 150+150 4.0 
Gallic Acid+Rutin 150+150 1.6 

Rosmarinic acid+Quercetin 150+150 12.6 
Rosmarinic Acid+Rutin 150+150 -1.8 
Caffeic Acid+Quercetin 600+150 37.9 
Caffeic Acid+Rutin 600+150 3.6 
Chlorogenic Acid+Quercetin 600+150 17.2 
Chlorogenic Acid+Rutin 600+150 5.5 

Source: [68], (+) Synergistic (-) Antagonistic 

 

Based on some of the studies above, it is known that most of 
combinations with various concentration ratio variations show 
synergistic interactions. The differences in interactions that occur in 
both phenolic and flavonoid-derived compounds are known due to 
differences in the types and variations in the concentration ratios of 

antioxidant-derived compounds combined, resulting in differences 
in the resulting interactions. However, both synergistic, additive, and 
antagonistic interactions cannot be ascertained how the mechanism 
of these three interactions occurs because there are still very few 
studies that conduct such research. 
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Table 6: Synergistic interactions in binary combinations of quercitrin, epicatechin, and chlorogenic acid 

Combination Concentration ratio Interaction 
Quercitrin and Chlorogenic Acid 
 

4:1 Synergistic 
2:1 Synergistic 

1:1 Synergistic 
1:2 Synergistic 
1:4 Synergistic 

Epicatechin and Chlorogenic Acid 4:1 Synergistic 
2:1 Synergistic 
1:1 Synergistic 

1:2 Synergistic 
1:4 Additives 

Source: [66] 

 

Interaction between phenolics and carotenoids 

An evaluation of the stability and antioxidant activity of a 
combination of phenolics and carotenoids was conducted in a study 
and showed that the combination can inhibit peroxidation initiated 
by MbFeIII, which is an iron component in food that acts as an 
inducer of lipid and protein oxidation. This inhibition of 
peroxidation is characterized by a decrease in absorbance compared 
to the control. Carotenoids (β-carotene and lycopene) play a role in 
stabilizing ferritin (MbFeIV=O) so that no conversion to the MbFeIII 
form occurs. The same is also done by chlorogenic acid, the 
hydrophilic nature of this compound plays a role in reducing 
peroxidation initiators. Known % synergy of acid combination 
chlorogenate with carotenoids in linoleic acid peroxidation at pH 5.8 
and pH 4, 118.5% and 101.6%, respectively [50]. 

The same interaction also occurs in the combination of chlorogenic 
acid and β-carotene; these two compounds synergize in free radical 
scavenging (t-BuO). Not only that, chlorogenic acid also protects β-
carotene from oxidation and also regenerates β-carotene from β-
carotene radical cations formed due to the reaction of β-carotene 
with t-BuO radicals. Chlorogenic acid can regenerate β-carotene by 
35.4% [70]. Regeneration of antioxidant compounds occurs when 
the bond dissociation energy possessed by an antioxidant is lower or 
equivalent to other antioxidants [71]. Chlorogenic acid has a bond 
dissociation energy of 80 kcal/mol, higher than the bond 
dissociation energy of β-carotene, which is 74 kcal/mol, so 
chlorogenic acid is able to regenerate β-carotene based on its bond 
dissociation energy. 

The combination of phenolics and carotenoids not only synergize in 

inhibiting peroxidation, but also as anti-inflammatory agents. A 
study revealed that when inflammation in the body occurs, the NFkB 
transcription system will be activated to induce the secretion of 
cytokines, such as IL-6 as an inflammatory response. The 
combination of carnosic acid and lycopene showed an inhibitory 
effect on UVB-induced IL-6 release higher than the inhibition of each 
individual. These results suggest that the combination of these 
binary compounds can prevent the activation of NFB transcription 
induced by UV light and reduce the secretion of inflammatory 
cytokines such as IL-6. The prevention of oxidative stress by 
inhibiting peroxidation time, as described in the previous study 
certainly correlates with the suppression of inflammatory levels by 
this combination of phenols and carotenoids, so this combination of 
binary compounds works synergistically as a natural antioxidant 
agent [72]. 

Some of the studies above show that the combination of phenolics 
(chlorogenic acid and carnosic acid) with carotenoids (β-carotene 
and lycopene) produces synergistic interactions. However, this has 
not been able to represent the interaction of the combination of 
phenolics and carotenoids as a whole so further studies are needed 
regarding the combination of other phenolic and carotenoid 
derivative compounds to determine the interactions that can occur. 

Interaction between Flavonoids and Carotenoids 

The combination of flavonoids (quercetin and luteolin) with 
carotenoids (lycopene and lutein) was carried out to determine the 
effect of preventing oxidative stress on endothelial cell culture 
(HUVEC). There were 6 groups of combinations shown in this study, 
namely.

 

Table 7: Combination group between flavonoids and carotenoids 

Group Antioxidant combination Concentration ratio 
M1 Lycopene: Luteolin 1:5 
M2 Lycopene: Quercetin 1:5 

M3 Lutein: Luteolin 1:5 
M4 Lutein: Luteolin 5:1 
M5 Lutein: Quercetin 1:1 
M6 Lutein: Quercetin 5:1 

Source: [54] 

 

A strong synergistic interaction was shown by the combination of 
M1-M5 in inhibiting ROS levels. M1-M3 also showed a synergistic 
effect in reducing NoX4 expression. An increase in NoX4 can be a 
sign of increased levels of Reactive Oxygen Species (ROS), which can 
trigger various diseases [73]. It is known that the combination of M2 
can reduce NoX4 expression by 3.5 times and inhibit the expression 
of phosphorylated p65, which plays an important role in inducing 
inflammation. H2O2 treatment of HUVEC cells tries to activate p65 so 
that it triggers the activation of NF-kB transcription, which causes 
inflammation, but M2 works in the opposite way to prevent 
inflammation [54]. 

SIRT1 is a protein that plays a role in extending cell life and 
inhibiting metabolic disorders, as well as regulating oxidative stress 
[74]. In fact, there is a relationship between the combination of 
quercetin and lycopene on SIRT1 stability. This was proven by 
monitoring at 37 °C-47 °C; M2 showed higher SIRT1 expression and 
remained stable when the temperature was increased to 57 °C [54]. 
In theory, SIRT1 expression will decrease with increasing 
temperature [75], so it can be indicated that the combination of 
lycopene and quercetin (1:5) shows a synergistic effect on SIRT1 
expression. The increase in SIRT1 expression in endothelial cell 
culture (HUVEC) is certainly significantly related to the decrease in 
NF-kB p65 expression induced by H2O2, as well as the suppression 
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of NoX4 production stimulated by NF-kB. This certainly has an 
impact on reducing the level of ROS through the SIRT1-NoX4 
pathway, thus preventing oxidative stress. 

These results show that combinations with a higher ratio of 
flavonoids to carotenoids actually provide a synergistic effect in 
terms of antioxidant activity. The reason why this happens is that 
flavonoids, both quercetin and luteolin, significantly increased 
lycopene uptake by 217% compared to individual lycopene alone, as 
well as lutein (M3 and M5). In contrast to M6, the much lower ratio 
of quercetin actually made lutein uptake decrease by 17% compared 
to lutein individually, so this result correlates with the synergistic 
effect on increasing antioxidant activity above and answers why M2 
is the best combination in preventing oxidative stress. 

In line with the above research, another study also revealed that the 
combination of Carotenyflavonoids has stronger antioxidant activity 
than its individual compounds. In addition, this combination was 
able to inhibit the peroxidation time for 3-3.2 h. This inhibition time 
is much longer than flavonoids and carotenoids individually, which 
is flavonoids inhibition time>2 h, while carotenoids<2 h [76]. The 
combination of other types of flavonoid and carotenoid derivatives 
also showed synergistic interactions. In a study conducted on the 
combination of EGCG and β-carotene, it was found that the 
combination with a higher concentration ratio of ECGC compared to 
β-carotene showed a synergistic interaction (Synergistic Effect 
value>1). Conversely, a lower ECGC concentration ratio triggers an 
antagonistic interaction [77]. This is because the role of ECGC can 
inhibit the oxidation of β-carotene, thereby enhancing the 
preservation of β-carotene. On the other hand, β-carotene also plays 
a role in increasing the antioxidant activity of ECGC so that the two 
synergize with each other. However, the combination with a higher 
β-carotene ratio showed an antagonistic interaction. The easily 
oxidized nature of β-carotene and turn into pro-oxidants actually 
favors in reducing the antioxidant effect of other compounds, thus 
reducing their antioxidant activity [78]. 

Similar to interactions in other compound combinations, 
differences in interactions occur in line with differences in the 
types and concentration ratios of flavonoid and carotenoid-
derived compounds, so further studies are needed to determine 
interactions in each combination with different types and 
concentration ratios. 

CONCLUSION 

Based on the literature review above, it can be concluded that the 
natural antioxidants found in tropical fruits (vitamin c, phenolics, 
flavonoids, and carotenoids) can interact with each other causing 
synergistic, additive, and even antagonistic effects between 
antioxidant compounds. This interaction may strengthen the 
antioxidant activity between compounds or weaken the 
antioxidant activity of other compounds. This interaction is 
influenced by several factors, such as the type of antioxidant 
compound derivative, variation in concentration ratio, differences 
in oxidation potential and antioxidant bond dissociation energy. 
This either directly or indirectly affects the interaction of the 
combination between antioxidant compounds. The lack of studies 
on binary combinations of antioxidant compounds means that the 
mechanisms of synergistic, additive and antagonistic interactions 
are not clearly known, so this topic is very interesting to be 
studied further and in depth. 
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