GC-MS ANALYSIS & MOLECULAR DOCKING STUDIES OF laserpitium LATIFOLIUM L EXTRACT FOR ANTI-DIABETIC ACTIVITY
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52343Keywords:
Lasterpitium latifolium L, Alpha-amylase and alpha-glucosidase, 2,4-Thiazolidinedione, 5- [[4-(4-pyridinyl)-6- quinolinyl] methylene] -(5Z)-, Cycloartenol acetateAbstract
Objective: To assess the anti-diabetic activity of Lasterpitium latifolium L extract through computational docking studies.
Methods: Crude extract of Lasterpitium latifolium L whole plant was obtained using a rotary evaporator. The extract was analyzed for bioactive compounds using Gas chromatography/Mass spectrometry (GC-MS). The extract was examined for their anti-diabetic effects through computational docking studies and in‑vitro. For docking studies, proteins of diabetes mellitus, α-amylase and α-glucosidase, were selected from the literature.
Results: Binding affinity assessed by score function identified 2,4-Thiazolidinedione, 5- [[4-(4-pyridinyl)-6- quinolinyl] methylene] -(5Z)- (highest docking score of -7.8 kcal/mol) and cycloartenol acetate (docking score of -7.5kcal/mol) are the most promising compounds that showed strong affinity to target proteins of diabetes mellitus. These compounds have the highest docking scores, suggesting that they are potential candidates for anti-diabetic drug development. Extract of L. latifolium exhibited 68.1% potent activity at 250 μg/mL.
Conclusion: In the anti-diabetic potential of crude extracts, multiple pancreatic and extra pancreatic mechanisms may occur synergistically to achieve a strong anti-diabetic effect.
Downloads
References
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019 Nov; 157:107843.
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan;183:109119.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005 Jun;54(6):1615-25.
Prior RL, Cao G. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc Soc Exp Biol Med. 1999 Apr;220(4):255-61.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;8416763.
Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010 Mar-Apr;3(2):101-8.
Jones JG. Hepatic glucose and lipid metabolism. Diabetologia. 2016 Jun;59(6):1098-103.
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005 Apr;365(9467):1333-46.
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants extracts. Afr J Tradit Complement Altern Med. 2011 Jan;8(1):1-10.
Sahoo SK, Bansal M. MPPT Techniques-A Review. Adv Mater Res. 2014; 1055:182-187.
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017 Sep;6(4):42.
Kumar V, Yadav SK. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L. IET Nanobiotechnol. 2012 Mar;6(1):1-8.
Allard PM, Bisson J, Azzollini A, Pauli GF, Cordell GA, Wolfender JL. Pharmacognosy in the digital era: shifting to contextualized metabolomics. Curr Opin Biotechnol. 2018 Dec; 54:57-64.
Harborne JB. Phytochemical methods: a guide to modern technique of plant analysis, Champmam and Hall, London.1988;3:60-66.
Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Futur J Pharm Sci 7. 2021;59.
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020 Nov;25(22):5243.
Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, Jäger AK, van Staden J. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol. 1999 Dec;68(1-3):267-74.
Zhang X, Li G, Wu D, Yu Y, Hu N, Wang H, Li X, Wu Y. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct. 2020 Jan;11(1):66-82.
Akaho E. An overview of epigenetic drugs, and their virtual screening study retrieved from zinc database along with an autodock study of the best inhibitor. Int J App Pharm. 2021 May;13(5):122–131.
Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinology and metabolism clinics of North America. 1997 Sep;26(3):539-51.
Shettar AK, Vedamurthy AB. Studies on in vitro antidiabetic activities of Hopea ponga and Vitex leucoxylon. Int J Pharm Pharm Sci. 2017 Feb;9(2):263.
Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in prevalence of diabetes in Asian countries. World J Diabetes. 2012 Jun 15;3(6):110-7.
Pothireddy S, Chukka S, Shankaraiah P. Evaluation of antidiabetic, antidyslipidemic & hepatoprotective activity of Homalium zeylanicum in alloxan induced diabetic rats. Int J Res Dev Pharm Life Sci. 2014 Mar; 3(3):1004-10.
Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al. Potent α-glucosidase and a-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Altern Med. 2012 Dec; 12:176.
Narkhede MB, Ajimire PV, Wagh AE, Mohan M, Shivashanmugam AT. In vitro antidiabetic activity of Caesalpina digyna (R.) Methanol root extract. Asian J Plant Sci Res. 2011 Feb;1(2):101-6.
Uddin N, Hasan MR, Hossain MM, Sarker A, Hasan AH, Islam AF, et al. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. Fruit Asian Pac J Trop Biomed. 2014 Jun;4(6):473-9.
Wenning L, Pillai GC, Knepper TC, Ilic K, Ali AM, Hibma JE. Clinical pharmacology worldwide: A Global Health perspective. Clin Pharmacol Ther. 2021 Oct;110(4):946-951
Morganti S, Tarantino P, Ferraro E, D'Amico P, Duso BA, Curigliano G. Next Generation Sequencing (NGS): A Revolutionary technology in pharmacogenomics and personalized medicine in cancer. Adv Exp Med Biol. 2019; 1168:9-30.
Kurian T. Molecular docking study of epigallocatechin gallate on flt3 in complex with gilteritinib for anticancer activity. Asian J Pharm Clin Res. 2024 Jan;17(1):5-7.
Kurian T. In silico screening by molecular docking of heterocyclic compounds with furan or indole nucleus from database for anticancer activity and validation of the method by redocking. Int J Pharm Pharm Sci. 2024 Apr;16(4):42-45.
Aiswariya SBV, Satya MS. Molecular docking and ADMET studies of benzotriazole derivatives tethered with isoniazid for antifungal activity. Int J Curr Pharm Res. 2022 Jul;14(4):78-80.
Published
How to Cite
Issue
Section
Copyright (c) 2024 DIVYA MUKKA, KRISHNA PRASAD DEVARAKONDA
This work is licensed under a Creative Commons Attribution 4.0 International License.