PREVENTING DIABETIC KIDNEY DISEASE: A SYSTEMATIC REVIEW OF CURRENT PHARMACOLOGICAL APPROACHES

Authors

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52956

Keywords:

Diabetic kidney disease, Diabetic nephropathy, DN, DKD, Preventive therapy, Preventing diabetic nephropathy, Preventing DKD, Diabetes complications

Abstract

Objective: This review examines the growing global burden of Diabetic Nephropathy (DN), a major complication of Diabetes Mellitus (DM) and a leading cause of Chronic Kidney Disease (CKD) and End-Stage Renal Disease (ESRD). With diabetes rates increasing, DN presents a significant health challenge. Current treatments manage established DN, but preventive strategies targeting high-risk individuals are urgently needed. This review evaluates current and emerging therapies for DN prevention.

Methods: A comprehensive literature search was conducted across multiple databases (PubMed, Web of Science, SCOPUS and others) to identify studies on the treatment and prevention of DN in DM patients. Eligible studies included Randomized Controlled Trials (RCT), cohort studies and meta-analyses published upto 2024, focusing on outcomes like albuminuria, Glomerular Filtration Rate (GFR) and ESRD incidence.

Results: Current treatments, including Sodium Glucose Co-transporter 2 (SGLT2) inhibitors, Angiotensin-Converting Enzyme (ACE) inhibitors and Angiotensin Receptor Blocker (ARB), effectively reduce albuminuria and slow progression. Emerging therapies, such as antioxidants (Alpha-Lipoic Acid (ALA), Resveratrol), Mineralocorticoid Receptor Antagonists (MRA) and Endothelin Receptor Antagonists (ERA), show promise in improving kidney function and reducing inflammation. Other potential therapies targeting Oxidative Stress (OS), inflammation and fibrosis, such as Advanced Glycation End products(AGE) inhibitors and Tumor Necrosis Factor-α (TNF-α) inhibitors, have demonstrated preclinical efficacy but require further validation.

Conclusion: While current therapies slow DN progression, they do not offer definitive prevention. Emerging treatments targeting oxidative stress, inflammation and fibrosis show promise in reducing kidney damage. However, challenges like side effects and long-term safety remain. Further research is needed to establish the efficacy of these therapies and develop personalized strategies for preventing DN in high-risk populations.

Downloads

Download data is not yet available.

References

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30. Available from: http://dx.doi.org/10.1016/S0140-6736(16)00618-8

Federation ID. IDF Diabetes Atlas Brussels. Belgium: international diabetes federation. 2021.

Garg AX, Kiberd BA, Clark WF, Haynes RB, Clase CM. Albuminuria and renal insufficiency prevalence guides population screening: results from the NHANESIII. Kidney Int. 2002;61:2165–75.

Naaman SC, Bakris GL. Diabetic nephropathy: Update on pillars of therapy slowing progression. Diabetes Care. 2023;46(9):1574–86. Available from: http://dx.doi.org/10.2337/dci23-0030

Sagoo MK, Gnudi L. Diabetic nephropathy: An overview. Methods Mol Biol. 2020;2067:3–7. Available from: http://dx.doi.org/10.1007/978-1-4939-9841-8_1

Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KAM, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018. Available from: http://dx.doi.org/10.1038/nrdp.2015.18

Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci. 2017;54(5):326–42. Available from: http://dx.doi.org/10.1080/10408363.2017.1377682

Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 2000;35(1):155–63. Available from: http://dx.doi.org/10.1161/01.hyp.35.1.155

Ames MK, Atkins CE, Pitt B. The renin angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33:363–82.

Ruiz-Ortega M, Lorenzo O, Suzuki Y, Rupérez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10(3):321–9. Available from: http://dx.doi.org/10.1097/00041552-200105000-00005

Poursharif S, Hamza S, Braam B. Changes in proximal tubular reabsorption modulate micro vascular regulation via the TGF system. Int J Mol Sci. 2022;23.

Tuttle KR. Back to the future: Glomerular hyperfiltration and the diabetic kidney. Diabetes. 2017;66(1):14–6. Available from: http://dx.doi.org/10.2337/dbi16-0056

Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72. Available from: http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887

14.Tonneijck L, Muskiet MHA, Smits MM, van Bommel EJ, Heerspink HJL, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39. Available from: http://dx.doi.org/10.1681/ASN.2016060666

Astor BC, Hallan SI, Miller ER 3rd, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol. 2008;167(10):1226–34. Available from: http://dx.doi.org/10.1093/aje/kwn033

Bello AK, Hemmelgarn B, Lloyd A. Alberta Kidney Disease Network. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin J Am Soc Nephrol. 2011;6:1418–26.

ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 11. Chronic kidney disease and risk management: Standards of care in diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S191–202. Available from: http://dx.doi.org/10.2337/dc23-S011

18.Sarnak MJ, Levey AS, Schoolwerth AC. American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease. Clinical Cardiology, and Epidemiology and Prevention Circulation. 2003;108:2154–69.

Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, et al. Role of macrophages and related cytokines in kidney disease. Front Med (Lausanne). 2021;8:688060. Available from: http://dx.doi.org/10.3389/fmed.2021.688060

Tesch GH. Macrophages and diabetic nephropathy. Semin Nephrol. 2010;30(3):290–301. Available from: http://dx.doi.org/10.1016/j.semnephrol.2010.03.007

Usher MG, Duan SZ, Ivaschenko CY. Myeloid mineralocorticoid receptor controls macro phage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120:3350–64.

American Diabetes Association. 6. Glycemic targets: Standards of Medical Care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S55–64. Available from: http://dx.doi.org/10.2337/dc18-S006

Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA. Clinical Guidelines Committee of the American College of Physicians. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med. 2018;168(8):569–76.

Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460–8. Available from: http://dx.doi.org/10.2337/dc13-0323

Groop PH, Cooper ME, Perkovic V, Hocher B, Kanasaki K, Haneda M, et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab. 2017;19(11):1610–9. Available from: http://dx.doi.org/10.1111/dom.13041

Scirica BM, Braunwald E, Raz I. SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;132(15):1579–88.

27.Marso SP, Daniels GH, Brown-Frandsen K. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579–89. Available from: http://dx.doi.org/10.1038/ki.2013.427

Marso SP, Bain SC, Consoli A. SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

Wanner C, Inzucchi SE, Lachin JM. EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

Barnett AH, Mithal A, Manassie J. EMPA-REG RENAL trial investigators. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84.

Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 2006;70(7):1223–33. Available from: http://dx.doi.org/10.1038/sj.ki.5001620

Whelton PK, Carey RM, Aronow WS. PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;71(19):e127-248.

ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85. Available from: http://dx.doi.org/10.1056/NEJMoa1001286

Lv J, Perkovic V, Foote CV, Craig ME, Craig JC, Strippoli GFM. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2012;12(8):CD004136. Available from: http://dx.doi.org/10.1002/14651858.CD004136.pub3

Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. Surv Anesthesiol. 2012;56(2):91–2. Available from: http://dx.doi.org/10.1097/01.sa.0000412361.12996.3b

Currie G, Taylor AHM, Fujita T, Ohtsu H, Lindhardt M, Rossing P, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):127. Available from: http://dx.doi.org/10.1186/s12882-016-0337-0

Bolignano D, Palmer SC, Navaneethan SD, Strippoli GFM. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;(4):CD007004. Available from: http://dx.doi.org/10.1002/14651858.CD007004.pub3

Menne J, Ritz E, Ruilope LM, Chatzikyrkou C, Viberti G, Haller H. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J Am Heart Assoc. 2014;3(2):e000810. Available from: http://dx.doi.org/10.1161/jaha.114.000810

Berbenetz NM, Mrkobrada M. Mineralocorticoid receptor antagonists for heart failure: systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16(1). Available from: http://dx.doi.org/10.1186/s12872-016-0425-x

Abdelhakim AM, Abd-ElGawad M. Impact of mineralocorticoid receptor antagonist in renal transplant patients: a systematic review and meta-analysis of randomized controlled trials. J Nephrol. 2020;33(3):529–38. Available from: http://dx.doi.org/10.1007/s40620-019-00681-4

Tromp J, Ouwerkerk W, Van Veldhuisen DJ, Hillege HL, Richards AM, Van Der Meer P. A systematic review and network metaanalysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail. 2020;33(3):73–84.

Chung EY, Ruospo M, Natale P, Bolignano D, Navaneethan SD, Palmer SC, et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev . 2020;10(10):CD007004. Available from: http://dx.doi.org/10.1002/14651858.CD007004.pub4

Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care . 2005;28(9):2106–12. Available from: http://dx.doi.org/10.2337/diacare.28.9.2106

Esteghamati A, Noshad S, Jarrah S, Mousavizadeh M, Khoee SH, Nakhjavani M. Longterm effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrol Dial Transpl. 2013;28(11):2823–33.

Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(5):940–51. Available from: http://dx.doi.org/10.2215/CJN.00240106

El Mokadem M, Abd El Hady Y, Aziz A. A prospective single-blind randomized trial of ramipril, eplerenone and their combination in type 2 diabetic nephropathy. Cardiorenal Med. 2020;10(6):392–401. Available from: http://dx.doi.org/10.1159/000508670

Bertocchio JP, Barbe C, Lavaud S, Toupance O, Nazeyrollas P, Jaisser F, et al. Safety of eplerenone for kidney-transplant recipients with impaired renal function and receiving cyclosporine A. PLoS One. 2016;11(4):e0153635. Available from: http://dx.doi.org/10.1371/journal.pone.0153635

Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial. JAMA. 2015;314(9):884. Available from: http://dx.doi.org/10.1001/jama.2015.10081

Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29. Available from: http://dx.doi.org/10.1056/NEJMoa2025845

Ito S, Shikata K, Nangaku M, Okuda Y, Sawanobori T. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: A randomized, double-blind, placebo-controlled, phase II trial: A randomized, double-blind, placebo-controlled, phase II trial. Clin J Am Soc Nephrol. 2019;14(8):1161–72. Available from: http://dx.doi.org/10.2215/CJN.14751218

Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, Okuda Y. Esaxerenone (CS3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol. 2020;15(12):1715–27.

Bakris G, Pergola PE, Delgado B, Genov D, Doliashvili T, Vo N, et al. Effect of KBP-5074 on blood pressure in advanced chronic kidney disease: Results of the BLOCK-CKD study. Hypertension. 2021;78(1):74–81. Available from: http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17073

Grdovi CN, Raji CJ, Arambaši C, Jovanovi CJ, Dini CS, Toli CAL. Acid Increases Collagen Synthesis and Deposition in Nondiabetic and Diabetic Rat Kidneys. Oxidative Med Cell Longev. 2021;2021.

Charlton A, Garzarella J, Jandeleit-Dahm KAM, Jha JC. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology (Basel). 2020;10(1):18. Available from: http://dx.doi.org/10.3390/biology10010018

Zhang H, Mu J, Du J, Feng Y, Xu W, Bai M, et al. Alpha-lipoic acid could attenuate the effect of chemerin-induced diabetic nephropathy progression. Iran J Basic Med Sci. 2021;24(8):1107–16. Available from: http://dx.doi.org/10.22038/ijbms.2021.50792.11570

Vakali E, Rigopoulos D, Carrillo AE, Flouris AD, Dinas PC. Effects of alpha-lipoic acid supplementation on human diabetic nephropathy: A systematic review and meta-analysis. Curr Diabetes Rev. 2022;18(6):e140921196457. Available from: http://dx.doi.org/10.2174/1573399817666210914103329

Jiang M, Sun H, Zhang H, Cheng Y, Zhai C. ALA/LA inhibited renal tubulointerstitial fibrosis of DKD db/db mice induced by oxidative stress. Research Square. 2024. Available from: http://dx.doi.org/10.21203/rs.3.rs-3956527/v1

Jeffrey S, Samraj PI, Raj BS. The role of alpha-lipoic acid supplementation in the prevention of diabetes complications: A comprehensive review of clinical trials. Curr Diabetes Rev. 2021;17(9):e011821190404. Available from: http://dx.doi.org/10.2174/1573399817666210118145550

Gowd V, Kang Q, Wang Q, Wang Q, Chen F, Cheng KW. Resveratrol: Evidence for its nephroprotective effect in diabetic nephropathy. Adv Nutr. 2020;11(6):1555–68. Available from: http://dx.doi.org/10.1093/advances/nmaa075

Xian Y, Gao Y, Lv W, Ma X, Hu J, Chi J, et al. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(10):2009–17. Available from: http://dx.doi.org/10.1007/s00210-019-01777-1

Salami M, Salami R, Mafi A, Aarabi MH, Vakili O, Asemi Z. Therapeutic potential of resveratrol in diabetic nephropathy according to molecular signaling. Curr Mol Pharmacol. 2022;15(5):716–35. Available from: http://dx.doi.org/10.2174/1874467215666211217122523

Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene. 2021;780(145532):145532. Available from: http://dx.doi.org/10.1016/j.gene.2021.145532

Sattarinezhad A, Roozbeh J, Shirazi Yeganeh B, Omrani GR, Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 2019;45(1):53–9. Available from: http://dx.doi.org/10.1016/j.diabet.2018.05.010

Chen S, Li B, Chen L, Jiang H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J Transl Med. 2023;21(1):380. Available from: http://dx.doi.org/10.1186/s12967-023-04233-0

66.Zhu X, Xu X, Du C, Su Y, Yin L, Tan X, et al. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed Pharmacother. 2022;153(113438):113438. Available from: http://dx.doi.org/10.1016/j.biopha.2022.113438

Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and colorectal cancer: From basic to clinical evidences. Int J Mol Sci. 2020;21(7):2364. Available from: http://dx.doi.org/10.3390/ijms21072364

Asadi S, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Does curcumin or metformin attenuate oxidative stress and diabetic nephropathy in rats? J Nephropathol. 2018;8(1):8–8. Available from: http://dx.doi.org/10.15171/jnp.2019.08

Al-Tamimi JZ, Al-Farga NA, Alshammari AM, Mowyna B, Yahya MN. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKC/p66Shc axis and activation of FOXO-3a. J Nutr Biochem. 2021;87.

Gao L, Lv Q, Wang Y, Zhang D, Ding W, Cao L. Research on Mechanism of Curcumin with Chitosan Nanoparticles in Regulating the Activity of Podocytes in Diabetic Nephropathy Through Alleviating Oxidative Stress and Inflammation. Sci Adv Mater. 2022;14:752–9.

Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, et al. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release. 2023;353:621–33. Available from: http://dx.doi.org/10.1016/j.jconrel.2022.12.012

Shing CM, Adams MJ, Fassett RG, Coombes JS. Nutritional compounds influence tissue factor expression and inflammation of chronic kidney disease patients in vitro. Nutrition. 2011;27(9):967–72. Available from: http://dx.doi.org/10.1016/j.nut.2010.10.014

Alvarenga L, Salarolli R, Cardozo LFMF, Santos RS, de Brito JS, Kemp JA, et al. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin Nutr. 2020;39(12):3594–600. Available from: http://dx.doi.org/10.1016/j.clnu.2020.03.007

Alvarenga L, Cardozo LFMF, Da Cruz BO, Paiva BR, Fouque D, Mafra D. Curcumin supplementation improves oxidative stress and inflammation biomarkers in patients undergoing hemodialysis: a secondary analysis of a randomized controlled trial. Int Urol Nephrol. 2022;54(10):2645–52. Available from: http://dx.doi.org/10.1007/s11255-022-03182-9

Salarolli RT, Alvarenga L, Cardozo LFMF, Teixeira KTR, de S G Moreira L, Lima JD, et al. Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. Int Urol Nephrol. 2021;53(6):1231–8. Available from: http://dx.doi.org/10.1007/s11255-020-02760-z

Ghaiad HR, Ali SO, Al-Mokaddem AK, Abdelmonem M. Regulation of PKC/TLR-4/NF-kB signaling by sulbutiamine improves diabetic nephropathy in rats. Chem Biol Interact. 2023;381(110544):110544. Available from: http://dx.doi.org/10.1016/j.cbi.2023.110544

Liu W, Li F, Guo D, Du C, Zhao S, Li J, et al. Schisandrin B alleviates renal tubular cell epithelial-mesenchymal transition and mitochondrial dysfunction by Kielin/chordin-like protein upregulation via Akt pathway inactivation and adenosine 5’-monophosphate (AMP)-activated protein kinase pathway activation in diabetic kidney disease. Molecules. 2023;28(23). Available from: http://dx.doi.org/10.3390/molecules28237851

Cho CH, Yoo G, Kim M, Lee CJ, Choi IW, Ryu B, et al. Diphlorethohydroxycarmalol, a phlorotannin contained in brown edible seaweed Ishige okamurae, prevents AGE-related diabetic nephropathy by suppression of AGE-RAGE interaction. Food Biosci. 2023;53(102659):102659. Available from: http://dx.doi.org/10.1016/j.fbio.2023.102659

Coughlan MT, Cooper ME, Forbes JM. Can advanced glycation end product inhibitors modulate more than one pathway to enhance renoprotection in diabetes? Ann N Y Acad Sci. 2005;1043(1):750–8. Available from: http://dx.doi.org/10.1196/annals.1333.087

Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24(1):32–40. Available from: http://dx.doi.org/10.1159/000075627

Forbes JM, Thorpe SR, Thallas-Bonke V, Pete J, Thomas MC, Deemer ER, et al. Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. J Am Soc Nephrol. 2005;16(8):2363–72. Available from: http://dx.doi.org/10.1681/ASN.2005010062

Yang L, Xu L, Hao X, Song Z, Zhang X, Liu P, et al. An aldose reductase inhibitor, WJ-39, ameliorates renal tubular injury in diabetic nephropathy by activating PINK1/Parkin signaling. Eur J Pharmacol. 2024;967(176376):176376. Available from: http://dx.doi.org/10.1016/j.ejphar.2024.176376

Song T, Wang R, Zhou X, Chen W, Chen Y, Liu Z, et al. Metabolomics and molecular dynamics unveil the therapeutic potential of epalrestat in diabetic nephropathy. Int Immunopharmacol. 2024;140(112812):112812. Available from: http://dx.doi.org/10.1016/j.intimp.2024.112812

Okuda Y, Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, et al. The renoprotective effect of esaxerenone independent of blood pressure lowering: a post hoc mediation analysis of the ESAX-DN trial. Hypertens Res. 2023;46(2):437–44. Available from: http://dx.doi.org/10.1038/s41440-022-01008-w

Liang F, Glascock CB, Schafer DL, Sandoval J, Cable LA, Melvin L. Darusentan Is a Potent Inhibitor of Endothelin Signaling and Function in Both Large and Small Arteries. Can. J Physiol Pharmacol. 2010;88:840–9.

Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937–47. Available from: http://dx.doi.org/10.1016/S0140-6736(19)30772-X

Scott LJ. Sitaxentan: In pulmonary arterial hypertension. Drugs. 2007;67(5):761–70. Available from: http://dx.doi.org/10.2165/00003495-200767050-00007

Enseleit F, Lüscher TF, Ruschitzka F. Darusentan, a selective endothelin A receptor antagonist, for the oral treatment of resistant hypertension. Ther Adv Cardiovasc Dis. 2010;4(4):231–40. Available from: http://dx.doi.org/10.1177/1753944710373785

Mann JFE, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol . 2010;21(3):527–35. Available from: http://dx.doi.org/10.1681/ASN.2009060593

Anguiano L, Riera M, Pascual J, Soler MJ. Endothelin blockade in diabetic kidney disease. J Clin Med. 2015;4(6):1171–92. Available from: http://dx.doi.org/10.3390/jcm4061171

Zhou Y, Chi J, Huang Y, Dong B, Lv W, Wang YG. Efficacy and safety of endothelin receptor antagonists in type 2 diabetic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Diabet Med. 2021;38(1):e14411. Available from: http://dx.doi.org/10.1111/dme.14411

Thomas MC. Targeting the pathobiology of diabetic kidney disease. Adv Chronic Kidney Dis. 2021;28(4):282–9. Available from: http://dx.doi.org/10.1053/j.ackd.2021.07.001

Sharov AV, Burkhanova TM, Taskın Tok T, Babashkina MG, Safin DA. Correction: Sharov et al. Computational Analysis of Molnupiravir. Int. J. Mol. Sci. 2022, 23, 1508. Int J Mol Sci. 2022;23(21):13026. Available from: http://dx.doi.org/10.3390/ijms232113026

Zang N, Cui C, Guo X, Song J, Hu H, Yang M, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience . 2022;25(10):105145. Available from: http://dx.doi.org/10.1016/j.isci.2022.105145

Yang Z, Liu F, Qu H, Wang H, Xiao X, Deng H. 1, 25(OH)2D3 protects β cell against high glucose-induced apoptosis through mTOR suppressing. Mol Cell Endocrinol. 2015;414:111–9. Available from: http://dx.doi.org/10.1016/j.mce.2015.07.023

Shi L, Xiao C, Zhang Y, Xia Y, Zha H, Zhu J, et al. Vitamin D/vitamin D receptor/Atg16L1 axis maintains podocyte autophagy and survival in diabetic kidney disease. Ren Fail. 2022;44(1):694–705. Available from: http://dx.doi.org/10.1080/0886022X.2022.2063744

Chen DP, Ma YP, Zhuo L, Zhang Z, Zou GM, Yang Y, et al. 1,25-Dihydroxyvitamin D3 inhibits the proliferation of rat mesangial cells induced by high glucose via DDIT4. Oncotarget. 2018;9(1):418–27. Available from: http://dx.doi.org/10.18632/oncotarget.23063

Wang B, Peng L, Ouyang H, Wang L, He D, Zhong J, et al. Induction of DDIT4 impairs autophagy through oxidative stress in dry eye. Invest Ophthalmol Vis Sci. 2019;60(8):2836–47. Available from: http://dx.doi.org/10.1167/iovs.19-27072

Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63. Available from: http://dx.doi.org/10.1681/ASN.2010010010

Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel). 2021;10(2):313. Available from: http://dx.doi.org/10.3390/antiox10020313

Kogot-Levin A, Hinden L, Riahi Y, Israeli T, Tirosh B, Cerasi E, et al. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors. Cell Rep. 2020;32(4):107954. Available from: http://dx.doi.org/10.1016/j.celrep.2020.107954

Reifsnyder PC, Flurkey K, Te A, Harrison DE. Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging (Albany NY). 2016;8(11):3120–30. Available from: http://dx.doi.org/10.18632/aging.101117

Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun. 2009;384(4):471–5. Available from: http://dx.doi.org/10.1016/j.bbrc.2009.04.136

Murakami N, Riella LV, Funakoshi T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis: Complications post-mTORi conversion. Am J Transplant. 2014;14(10):2317–27. Available from: http://dx.doi.org/10.1111/ajt.12852

Paluri RK, Sonpavde G, Morgan C, Rojymon J, Mar AH, Gangaraju R. Renal toxicity with mammalian target of rapamycin inhibitors: A meta-analysis of randomized clinical trials: A meta-analysis of randomized clinical trials. Oncol Rev. 2019;13(2):455. Available from: http://dx.doi.org/10.4081/oncol.2019.455

Flaquer M, Lloberas N, Franquesa M, Torras J, Vidal A, Rosa JL, et al. The combination of sirolimus and rosiglitazone produces a renoprotective effect on diabetic kidney disease in rats. Life Sci. 2010;87(5–6):147–53. Available from: http://dx.doi.org/10.1016/j.lfs.2010.06.004

Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, et al. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep. 2016;36(4). Available from: http://dx.doi.org/10.1042/BSR20160086

Wang MZ, Wang J, Cao DW, Tu Y, Liu BH, Yuan CC, et al. Fucoidan alleviates renal fibrosis in diabetic kidney disease via inhibition of NLRP3 inflammasome-mediated podocyte pyroptosis. Front Pharmacol. 2022;13:790937. Available from: http://dx.doi.org/10.3389/fphar.2022.790937

Liu H, Wang Q, Shi G, Yang W, Zhang Y, Chen W, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephropathy via regulating AMPK/mTOR-mediated autophagy signaling pathway. Diabetes Metab Syndr Obes. 2021;14:1253–66. Available from: http://dx.doi.org/10.2147/DMSO.S299375

Lv L, Zhang J, Tian F, Li X, Li D, Yu X. 874 glucose-induced apoptosis and autophagy by up-regulating microRNA-27a. Artif Cells Nanomed Biotechnol. 2019;47(1):2940–7.

Lin W, Pan J, Huang E, Zhu Q. Ginkgetin alleviates high glucose-evoked mesangial cell oxidative stress injury, inflammation, and extracellular matrix (ECM) deposition in an AMPK/mTOR-mediated autophagy axis. Chem Biol Drug Des. 2021;98(4):620–30.

Dong R, Zhang X, Liu Y, Zhao T, Sun Z, Liu P, et al. Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via PI3K/AKT/mTOR pathway in diabetic kidney disease. Phytomedicine. 2023;112(154700):154700. Available from: http://dx.doi.org/10.1016/j.phymed.2023.154700

Tao M, Zheng D, Liang X. Tripterygium glycoside suppresses epithelial-to mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway. Mol Med Rep. 2021;24(2).

Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/akt/mTOR pathway. Mol Ther Nucleic Acids. 2024;35(4):102343. Available from: http://dx.doi.org/10.1016/j.omtn.2024.102343

Yang F, Qu Q, Zhao C, Liu X, Yang P, Li Z, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Biomed Pharmacother. 2020;129(110479):110479. Available from: http://dx.doi.org/10.1016/j.biopha.2020.110479

Guo L, Tan K, Luo Q, Bai X. Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy. Bosn J Basic Med Sci. 2020;20(3):372–80. Available from: http://dx.doi.org/10.17305/bjbms.2019.4410

Wang T, Gao Y, Yue R, Wang X, Shi Y, Xu J, et al. Ginsenoside Rg1 alleviates podocyte injury induced by hyperlipidemia via targeting the mTOR/NF-κB/NLRP3 axis. Evid Based Complement Alternat Med. 2020;2020(1):2735714. Available from: http://dx.doi.org/10.1155/2020/2735714

Sheng H, Zhang D, Zhang J, Zhang Y, Lu Z, Mao W, et al. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways. Front Med (Lausanne). 2022;9:986825. Available from: http://dx.doi.org/10.3389/fmed.2022.986825

Wang WJ, Jiang X, Gao CC, Chen ZW. Salusin-α mitigates diabetic nephropathy via inhibition of the Akt/mTORC1/p70S6K signaling pathway in diabetic rats. Drug Chem Toxicol. 2022;45(1):283–90. Available from: http://dx.doi.org/10.1080/01480545.2019.1683572

Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Zhou X, et al. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides. 2019;114:29–37. Available from: http://dx.doi.org/10.1016/j.peptides.2019.04.005

Wu C, Ma X, Zhou Y, Liu Y, Shao Y, Wang Q. Klotho restraining Egr1/TLR4/mTOR axis to reducing the expression of fibrosis and inflammatory cytokines in high glucose cultured rat mesangial cells. Exp Clin Endocrinol Diabetes. 2019;127(9):630–40. Available from: http://dx.doi.org/10.1055/s-0044-101601

DiPetrillo K, Coutermarsh B, Gesek FA. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol. 2003;284(1):F113-21. Available from: http://dx.doi.org/10.1152/ajprenal.00026.2002

Moriwaki Y, Inokuchi T, Yamamoto A, Ka T, Tsutsumi Z, Takahashi S, et al. Effect of TNF-alpha inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol . 2007;44(4):215–8. Available from: http://dx.doi.org/10.1007/s00592-007-0007-6

Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol. 2014;306(11):F1335-47. Available from: http://dx.doi.org/10.1152/ajprenal.00509.2013

Karkar AM, Smith J, Pusey CD. Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor-alpha. Nephrol Dial Transplant. 2001;16(3):518–24. Available from: http://dx.doi.org/10.1093/ndt/16.3.518

Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2003;285(4):F610-8. Available from: http://dx.doi.org/10.1152/ajprenal.00101.2003

Zandi-Nejad K, Eddy AA, Glassock RJ, Brenner BM. Why is proteinuria an ominous biomarker of progressive kidney disease? Kidney Int Suppl. 2004;66(92):S76-89. Available from: http://dx.doi.org/10.1111/j.1523-1755.2004.09220.x

Lin SL, Chiang WC, Chen YM, Lai CF, Tsai TJ, Hsieh BS. The renoprotective potential of pentoxifylline in chronic kidney disease. J Chin Med Assoc. 2005;68:99–105.

Garcia FAO, Pinto SF, Cavalcante AF, Lucetti LT, Menezes SM, Felipe CFB, et al. Pentoxifylline decreases glycemia levels and TNF-alpha, iNOS and COX-2 expressions in diabetic rat pancreas. Springerplus. 2014;3(1):283. Available from: http://dx.doi.org/10.1186/2193-1801-3-283

Goicoechea M, García de Vinuesa S, Quiroga B, Verdalles U, Barraca D, Yuste C, et al. Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial. J Nephrol. 2012;25(6):969–75. Available from: http://dx.doi.org/10.5301/jn.5000077

Sahın S, Altok K, Pasaoglu H, Omeroglu S, Derıcı B, Erten U. The protective effects of pentoxifylline on contrast induced nephropathy in rats. Akdeniz Tıp Dergisi. 2019;5:429–38.

González-Espinoza L, Rojas-Campos E, Medina-Pérez M, Peña-Quintero P, Gómez-Navarro B, Cueto-Manzano AM. Pentoxifylline decreases serum levels of tumor necrosis factor alpha, interleukin 6 and C-reactive protein in hemodialysis patients: results of a randomized double blind, controlled clinical trial. Nephrol Dial Transplant. 2012;27:2023–8.

Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC. Anti inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS ONE. 2012;7:45–243.

Kuwabara T, Mori K, Mukoyama M, Kasahara M, Yokoi H, Saito Y. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2009;75:285–94.

Joy SV, Scates AC, Bearelly S, Dar M, Taulien CA, Goebel JA. Ruboxistaurin, a protein kinase C β inhibitor, as an emerging treatment for diabetes microvascular complications. Annals of Pharmacotherapy. 2005;39(10):1693–9.

Dash A, Maiti R, Bandakkanavar TKA, Pandey BL. Novel drug treatment for diabetic nephropathy. Hong Kong J Nephrol. 2011;13(1):19–26. Available from: http://dx.doi.org/10.1016/s1561-5413(11)60003-3

Pham TK, Nguyen THT, Yun HR, Vasileva EA, Mishchenko NP, Fedoreyev SA, et al. Echinochrome A prevents diabetic nephropathy by inhibiting the PKC-iota pathway and enhancing renal mitochondrial function in db/db mice. Mar Drugs. 2023;21(4):222. Available from: http://dx.doi.org/10.3390/md21040222

Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol. 2015;308(11):F1276-87. Available from: http://dx.doi.org/10.1152/ajprenal.00396.2014

Menne J, Eulberg D, Beyer D, Baumann M, Saudek F, Valkusz Z, et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant. 2017;32(2):307–15. Available from: https://academic.oup.com/ndt/article/32/2/307/2982334

Boels MGS, Koudijs A, Avramut MC, Sol WMPJ, Wang G, van Oeveren-Rietdijk AM, et al. Systemic monocyte chemotactic protein-1 inhibition modifies renal macrophages and restores glomerular endothelial glycocalyx and barrier function in diabetic nephropathy. Am J Pathol. 2017;187(11):2430–40. Available from: http://dx.doi.org/10.1016/j.ajpath.2017.07.020

de Zeeuw D, Akizawa T, Agarwal R, Audhya P, Bakris GL, Chin M, et al. Rationale and trial design of Bardoxolone Methyl Evaluation in patients with Chronic Kidney Disease and type 2 diabetes: The occurrence of Renal Events (BEACON). Am J Nephrol. 2013;37(3):212–22. Available from: http://dx.doi.org/10.1159/000346948

de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503. Available from: http://dx.doi.org/10.1056/NEJMoa1306033

Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019;58(Suppl 1):i17–26. Available from: http://dx.doi.org/10.1093/rheumatology/key225

Plosker GL. Ruxolitinib: a review of its use in patients with myelofibrosis. Drugs. 2015;75(3):297–308. Available from: http://dx.doi.org/10.1007/s40265-015-0351-8

Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–62. Available from: http://dx.doi.org/10.1038/nrd.2017.201

Kim HO. Development of JAK inhibitors for the treatment of immune-mediated diseases: kinase-targeted inhibitors and pseudokinase-targeted inhibitors. Arch Pharm Res. 2020;43(11):1173–86. Available from: http://dx.doi.org/10.1007/s12272-020-01282-7

Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016;59(8):1624–7. Available from: http://dx.doi.org/10.1007/s00125-016-4021-5

Tuttle KR, Brosius FC 3rd, Adler SG, Kretzler M, Mehta RL, Tumlin JA, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant. 2018;33(11):1950–9. Available from: http://dx.doi.org/10.1093/ndt/gfx377

El-Kady MM, Naggar RA, Guimei M, Talaat IM, Shaker OG, Saber-Ayad M. Early renoprotective effect of ruxolitinib in a rat model of diabetic nephropathy. Pharmaceuticals (Basel). 2021;14(7):608. Available from: http://dx.doi.org/10.3390/ph14070608

Elsherbiny NM, Zaitone SA, Mohammad HMF, El-Sherbiny M. Renoprotective effect of nifuroxazide in diabetes-induced nephropathy: impact on NFκB, oxidative stress, and apoptosis. Toxicol Mech Methods. 2018;28(6):467–73. Available from: http://dx.doi.org/10.1080/15376516.2018.1459995

Zhu M, Wang H, Chen J, Zhu H. Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats. Life Sci. 2021;265(118855):118855. Available from: http://dx.doi.org/10.1016/j.lfs.2020.118855

Gholami M, Moallem SA, Afshar M, Amoueian S, Etemad L, Karimi G. Teratogenic effects of silymarin on mouse fetuses. Avicenna J Phytomed. 2016;6(5):542–9.

Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists. Int J Mol Sci. 2021;22(19):10822. Available from: http://dx.doi.org/10.3390/ijms221910822

Yang Y, Lei Y, Liang Y, Fu S, Yang C, Liu K, et al. Vitamin D protects glomerular mesangial cells from high glucose-induced injury by repressing JAK/STAT signaling. Int Urol Nephrol. 2021;53(6):1247–54. Available from: http://dx.doi.org/10.1007/s11255-020-02728-z

Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–40. Available from: http://dx.doi.org/10.1038/nrneph.2011.51

Li HY, Lin HA, Nien FJ, Wu VC, Jiang YD, Chang TJ, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes. PLoS One. 2016;11(2):e0147981. Available from: http://dx.doi.org/10.1371/journal.pone.0147981

Qian Y, Li S, Ye S, Chen Y, Zhai Z, Chen K, et al. Renoprotective effect of rosiglitazone through the suppression of renal intercellular adhesion molecule-1 expression in streptozotocin-induced diabetic rats. J Endocrinol Invest. 2008;31(12):1069–74. Available from: http://dx.doi.org/10.1007/BF03345654

Rubio-Guerra AF, Vargas-Robles H, Lozano Nuevo JJ, Escalante-Acosta BA. Correlation between circulating adhesion molecule levels and albuminuria in type-2 diabetic hypertensive patients. Kidney Blood Press Res. 2009;32(2):106–9. Available from: http://dx.doi.org/10.1159/000210554

de Zeeuw D, Renfurm RW, Bakris G, Rossing P, Perkovic V, Hou FF, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2018;6(12):925–33. Available from: http://dx.doi.org/10.1016/S2213-8587(18)30289-4

Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139–52. Available from: http://dx.doi.org/10.1042/CS20120198

Giunti S, Barutta F, Perin PC, Gruden G. Targeting the MCP-1/CCR2 System in diabetic kidney disease. Curr Vasc Pharmacol. 2010;8(6):849–60. Available from: http://dx.doi.org/10.2174/157016110793563816

Sayyed SG, Hägele H, Kulkarni OP, Endlich K, Segerer S, Eulberg D, et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia. 2009;52(11):2445–54. Available from: http://dx.doi.org/10.1007/s00125-009-1493-6

Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin receptor antagonists: Status quo and future perspectives for targeted therapy. J Clin Med. 2020;9(3):824. Available from: http://dx.doi.org/10.3390/jcm9030824

Wang Y, Chen S, Du J. Bosentan for treatment of pediatric idiopathic pulmonary arterial hypertension: State-of-the-art. Front Pediatr. 2019;7:302. Available from: http://dx.doi.org/10.3389/fped.2019.00302

Schlaich MP, Bellet M, Weber MA, Danaietash P, Bakris GL, Flack JM, et al. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet. 2022;400(10367):1927–37. Available from: http://dx.doi.org/10.1016/S0140-6736(22)02034-7

Murugesan N, Gu Z, Fadnis L, Tellew JE, Baska R, Yang Y. Dual Angiotensin II and Endothelin A Receptor Antagonists: Synthesis of 20 -Substituted N-3-Isoxazolyl Biphenylsulfonamides with Improved Potency and Pharmacokinetics. J Med Chem. 2005;48:171–9.

Zhao Q, Guo N, Chen J, Parks D, Tian Z. Comparative assessment of efficacy and safety of ambrisentan and bosentan in patients with pulmonary arterial hypertension: A meta-analysis. J Clin Pharm Ther. 2022;47(2):146–56. Available from: http://dx.doi.org/10.1111/jcpt.13481

Persson BP, Rossi P, Weitzberg E, Oldner A. Inhaled tezosentan reduces pulmonary hypertension in endotoxin-induced lung injury. Shock. 2009;32(4):427–34. Available from: http://dx.doi.org/10.1097/SHK.0b013e31819e2cbb

Iglarz M, Binkert C, Morrison K, Fischli W, Gatfield J, Treiber A, et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J Pharmacol Exp Ther. 2008;327(3):736–45. Available from: http://dx.doi.org/10.1124/jpet.108.142976

Published

06-12-2024

How to Cite

DHARANI, B., SEBASTIAN, S., NAZRIN, S., & A., S. (2024). PREVENTING DIABETIC KIDNEY DISEASE: A SYSTEMATIC REVIEW OF CURRENT PHARMACOLOGICAL APPROACHES. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52956

Issue

Section

Review Article(s)