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ABSTRACT 

Material in the nanometric size are used as diagnostic instruments or even to administer therapeutic compounds to particular target regions in a 
controlled way in nanoparticles and nano delivery systems, which is a relatively young but fast-emerging discipline. By delivering accurate 
medications to specified locations and targets, nanotechnology provides numerous advantages in the treatment of chronic human diseases. The use 
of nanomedicine (including chemotherapy medicines, biological agents, immunotherapeutic agents, etc.) in the treatment of various illnesses has 
recently seen a number of notable uses. Through careful examination of the discovering and use of nanomaterials in enhancing the effectiveness of 
both new and old drugs (such as organic products) and preferential diagnosis through disease marker substances, the review article offers a 
comprehensive overview of recent developments in the field of nanoparticles and nano-based drug delivery. The advantages and disadvantages of 
using nanoparticles for the therapeutic delivery of drugs from natural or synthetic origins are also covered. Additionally, we have provided details 
on the developments and prospects in the field of nanotechnology. 
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INTRODUCTION 

Since bigger micro-molecules are less effectively absorbed by cells 
than nanoparticles, they may be used as efficient delivery and 
transport systems. Drugs may either be affixed to the particle surface 
or incorporated into the particle-matrix for therapeutic uses [1]. The 
outcome of a drug, after it enters the biological environment ought to 
be under the direction of a drug-targeting system [2]. Drug delivery 
nanoparticles typically measure less than 100 nm in at least one 
dimension and are made of a variety of biodegradable substances, 
including natural or manufactured polymers, lipids and metals [3].  

Developing nanoparticles logically based on knowledge of about their 
interactions with the physiological environment, cell surface 
population, specific cell receptors, changes in cellular receptors that 
occur as disease progresses, pathway and location of action of the 
drug, drug retainment, multiple administration of drugs, molecular 
pathways, and microbiology of the disorder under considering would 
be an effective method for achieving effective drug delivery. It's crucial 
to comprehend the obstacles to medication development, such as the 
therapeutic agents' stability in a living cell environment [4]. 

Natural products display exceptional chemical variety, chemical and 
biological capabilities with macromolecular specificity, and lower 
toxicity, among other noteworthy traits. They mostly have special 
benefits, including reduced side effects and toxicity, low cost, and 
strong therapeutic potential [5]. Large-sized components in drug 
delivery pose significant challenges, poor absorption in the body, 
poor in vivo instability, and low bioavailability, problems with 
target-specific delivery, low solubility, tonic efficiency, and likely 
drug adverse effects. In contrast, many natural compounds are 
unable to pass the clinical trial stages [6]. 

Nanostructures allow the delivery of combined medications at the 
prescribed dose since they persist in the blood circulation system for 
a long time. They consequently result in fewer plasma fluctuations 
and worse side effects. Due to their nanoscale, these structures can 
easily enter the tissue system, make medication administration 
more effective, and assure that the medicine acts where it is 
intended [7, 8]. 

When creating target-specific drug delivery systems, metallic, 
organic, inorganic, and polymeric nanostructures, such as 
dendrimers, micelles, and liposomes, are commonly taken into 

account. These nanoparticles are specifically added to medications 
that have limited solubility and poor absorption.  

Thus, the site-specific and target-oriented administration of 
medications made possible by nanotechnology has many advantages 
in the treatment of chronic human diseases. However, the lack of 
knowledge regarding the toxicity of nanostructures is a significant 
concern and unquestionably calls for more study to increase the 
efficacy while maintaining better safety to permit better actual 
application of these medications [9]. 

Novel drug delivery system (NDDS) 

To increase the intake of low-solubility medications, the localization 
of drugs to a specific region, and drug bioavailability, nanoparticles 
can be utilised in the targeted delivery of medications at the site of 
disease. Fig. 1 depicts a conceptual comparative of untargeted and 
targeted medication delivery methods. 

 

 

Fig. 1: Diagrammatic representation of novel drug delivery 
system 
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Benefits of nanotechnology-based drug design  

The advantages of using nanoparticles as medication delivery 
systems are due to their small size and, in most instances, the 
utilization of biodegradable materials.  

Particle size is discovered to play a significant role in the success of 
the majority of medicine delivery systems. Due to its vast surface 
area and small particle size, drug nanoparticles have a higher 
bioavailability and enhanced solubility. They also have added more 
value because of their capacity to penetrate the blood-brain barrier, 
the pulmonary system, tumour endothelium, and skin endothelial 
cell tight junctions. These particles' average nano-range size enables 
efficient medication absorption by a variety of types of cells as well 
as targeted drug accumulation [10]. 

The advantages of targeted drug delivery, improved bioavailability, 
and sustained release behaviour of medications from a single dose at 
the target site across an extended period of time are achieved by 
employing both natural and synthetic biopolymers for nanoparticle 
preparation; by adapting the framework, intrinsic enzymes can be 
precluded from destroying the drug [11]. 

Types of pharmaceutical nanoparticles  

Quantum dots 

Semiconducting nanostructures, which are 2–10 nm in size, make up 
quantum dots. These are nanoparticles with an organic shell covered 
in zinc sulphide to improve optical properties and an inorganic 
semiconductor core that glows when exposed to light. The solubility 
of quantum dots in aqueous buffers is enhanced by the inclusion of a 
capping. Real-time monitoring, bio-imaging in vitro, and long-term 
monitoring of intracellular activities have all been linked to a 
number of benefits. Among these characteristics are brilliant 
fluorescence, strong photo-stability, broad UV excitation, and 
narrow emission [12, 13]. 

Among the diagnostic and therapeutic uses of quantum dots include 
cell labelling, biomolecule sensing and biological effectiveness, DNA 
hybridization, immunoassays, the formation of non-viral vectors for 
gene therapy, carriers for the treatment of cancer, and transporters 
for biological and non-biological agents [14-16]. 

 

 

Fig. 2: Diagrammatic representation of quantum dots 

 

Nano-shells 

Nano-shells, which have a silica core and an exterior layer of metal, 
are modified prototypes for targeted therapy. By varying the ratio 
between both the core and shell, these particles' properties can be 
altered [17]. In order to attain the proper morphology, particles with 
certain forms could be protected by a thin shell [18]. As precious 
materials may be added to affordable cores, these shells offer the 
benefit of being affordable. Because of this, less expensive material is 

required for creating nano-shells. Nano-shells serve a variety of 
purposes, including chemically stabilising colloids, enhancing 
luminescence properties, and medication development [19]. 

 

 

Fig. 3: Diagrammatic representation of nano-shells 

 

Carbon nanotubes  

These tubes have a diameter range of 1 to 100 nm and are composed 
of graphite sheet cylinders which are capped at either one or both 
end by buckyballs. They are renowned because of being hollow and 
cage-like and are available in a number of graphite cylinder forms 
(nanotubes and fullerenes). Because of its size and surface 
characteristics, as well as important physical characteristics, they 
are appropriate for encapsulation [20]. Nanotubes enter cells 
through endocytosis or insertion from across cellular membranes. 
The architectures of fullerenes are able to target mitochondria both 
intracellularly and in tissues. It was also discovered that they have 
antioxidant and antibacterial activities [21]. It is of 2 types Single-
walled nanotubes (SWNTs) and Multi-walled nanotubes (MWNTs). 

 

 

Fig. 4: Diagrammatic representation of carbon nanotubes 

 

Paramagnetic nanoparticles  

Microscopic magnetic nanoparticles can be manipulated by a magnetic 
field and have a diameter of less than 100 nm. These nanoparticle 
materials are created using magnetic components [22]. These 
nanoparticles are categorised based on their sensitivity to magnetic 
fields. Paramagnetic nanoparticles have a higher magnetic 
susceptibility than conventional contrast versions. These 
nanoparticles are used in therapy and diagnosis plans. Targeting of 
magnetic nanoparticles is useful for identifying particular organs [23]. 

Polymeric nanoparticles  

Scientists are interested in biodegradable polymeric nanoparticles 
as a medication delivery strategy since they are largely 
biodegradable and biocompatible [24]. Vesicular systems, also 
known as nano-capsules and matrix systems also known as nano-
spheres, are two categories of Polymeric nanoparticles. Researchers 
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have recently investigated advanced modifications of natural 
polymers, including synthetic polyesters. Chitosan is one of the most 
well-known natural polymers. Numerous polymers mitigate 
hazardous problems associated with synthetic polymers [25]. 

Natural Polymeric nanoparticles won out over conventional 
distribution methods because of their greater efficacy and efficiency. 
They do, however, have significant shortcomings, such as low 
repeatability, issues with degrading, and significant antigenicity. The 
production process regulates the drug's release behaviour when it is 
encapsulated. Potential intracellular and site-targeting systems are 
known as polymeric nanoparticles [26]. 

Polylactic acid (PLA) and poly lactic-co-glycolide (PLGA) 
copolymers 

The hydrolyzing destruction of the polymers by de-esterification, 
that yields the monomeric constituents of lactic and glycolic acid, is 
the basis for PLGA's biodegradability. These constituents are 
subsequently metabolised and eliminated by the body via natural 
processes [27]. The most common hydrophilic polymer for surface 
treatment of both (hydrophobic) PLA and PLGA to create an 
amphiphilic block copolymer is polyethylene glycol (PEG). Its uses 
have mostly centred on nanoparticle, micelle, and hydrogel-based 
drug-delivery methods [28]. 

 

 

Fig. 5: Formation of poly lactic-co-glycolide (PLGA) 

 

A significant drug loading is made possible by the PEG-PLGA 
copolymer's chemical conjugation, which is characterized by the 
drug's enforced concentration in the inner hydrophobic chains. In 
comparison to physically included DOX in PEG-PLGA micelles, 
recently developed doxorubicin (DOX) conjugated PLGA-PEG 
micellar nanocarriers with a greater DOX loading demonstrated a 

more prolonged drug release behaviour [29]. The enormous 
possibility of these PLA and PLGA-based nanocarriers in the therapy 
of numerous diseases, including diabetes, cancer, cardiac 
dysfunction, bacterial infection, viral infection, autoimmune 
diseases, and cartilage damage, has also been demonstrated in a 
number of preclinical animal investigations [30]. 

 

 

Fig. 6: Diagrammatic representation of poly lactic acid (PLA) and poly lactic-co-glycolide (PLGA) copolymers 

 

Chitosan  

Chitosan can be employed to function at the constrictive epithelial 
junctions since it has muco-adhesive qualities. As a result, 
continuing release of drug systems for many different types of 
epithelia, such buccal, intestinal, nasal, ocular, and pulmonary, are 
frequently made of chitosan-based nanoparticles [31]. Chitosan is a 
biocompatible and biodegradable polymer having molecular moiety 
that may be easily changed to carry out specific tasks, making it 
appropriate for a wide range of possible uses. These groups often 
have positive surface charges. Furthermore, amphiphilic chitosan 
derivatives made by coupling hydrophobic long acyl chains with 

polymeric micelle nanoparticles have been created through self-
aggregation in water [32]. 
 

 

Fig. 7: Diagrammatic representation of Chitosan 
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Liposomes  

Amphiphilic phospholipids are used to create synthetic liposomes, 
which self-assemble. The diameter of the aqueous core domain can 
vary from 50 nm to the several μm in diameter [Small uni-lamellar 
vesicles (SUVs, less than 100 nm), large uni-lamellar vesicles (LUVs, 
100-1000 nm), and gigantic uni-lamellar vesicles (GUVs, more than 1 
μm, multi-lamellar vesicles (MLVs) have an onion-like structure made 
of concentric bilayer surfaces (hydrated multilayers)], and they are 
composed of spherical, double-layered vesicles that surround it [33-
35]. Biological properties of liposomes that are intriguing include their 
overall biocompatibility and biodegradable nature. The most 
frequently employed nano-systems as drug delivery systems in clinical 
studies are liposomes. It can be used to lessen adverse effects and 
toxicity as well as pharmaceutical clearance. Nano-sized altered 
liposomes possess good pharmacokinetic properties for the delivery of 
DNA, siRNA, proteins, and cancer therapies [36]. 

 

 

Fig. 8: Diagrammatic representation of liposomes 

 

Lipid-based systems are simpler to produce than biopolymers since 
the basic phospho-lipid molecules are widely available. 

The drawbacks of liposomes include their limited loading capacity, 
quick release of drug, and absence of programmable release of drug 
sequences. Since liposomes cannot enter cells, drugs are also 
released into extracellular fluid [37]. Surface treatment can be used 
to achieve stability and structural stability against with a harsh bio-
environment after oral or parenteral delivery. Ammonium sulphate 
gradients can be used to integrate drugs into liposomes' aqueous 
phase in order to slow down their fast drug release [38]. As a result, 
there will be constant drug entrapment and little drug loss during 
circulation. Additionally, liposomes and antibodies have been used 
to administer drugs to specific sites. 

The conjugation of appropriate hydrophilic polymers, including such 
dextran, alginate, and chitosan on their own surface, is indeed a key 
strategy for enhancing the associated with the occurrence of lipid 
nano-carriers. Other hydrophilic polymers include polyethylene 
glycol (PEG), polyvinyl alcohol (PVA), and polyvinyl pyrrolidone 
(PVP). With this strategy, it is possible to get beyond immune system 
interference, poor blood circulatory half-life, toxic effects, and 
biodegradable polymeric problems. The most popular polymer 
conjugation method, PEGylation, results in a surface density of 
highly hydrated particles that sterically inhibit interactions to 
plasma proteins or cells through both hydrophobic and electrostatic 
means. This slows down the RES's ability to absorb liposomes. 

Dendrimers  

Dendrimers are three-dimensional, hyperbranched nanoparticles 
which are structured in concentric rings (referred to as generations) 
and have several functional surfaces on the outside. They are made 
up of polymeric branch units which are covalently bonded to a core 
structure. These dendrimers' amount of branching, which can be 
controlled, determines their size. Furthermore, dendrimer spherical 

branching produces gaps that can be utilized for delivery of drugs 
and trapping [39, 40]. Dendrimer-free ends, in contrast hand, can be 
modified for molecular conjugation. 
 

 

Fig. 9: Diagrammatic representation of dendrimers 

 

The incorporation of appropriate compounds into the surfaces of 
dendrimers is among the most significant uses of these materials. 
This strategy encourages the creation of a new prototype that really 
can serve as an imaging agent, sensing affinity ligands, and targeting 
elements, while delivery of drugs applications show that dendrimers 
can effectively transfer genetic information into cells [41]. 

The main function in drug delivery procedures of Dendrimers appears 
to be played by charge effects and electrostatic forces. Various 
techniques that rely on the primary interaction among dendrimers 
and lipid bilayers, include adsorption on membrane, gap generation, 
and vesicles disruption, could be taking strategic on the dendrimer 
chemical composition, shape, and charge density [42]. The measured 
by total between charged dendrimers and zwitterionic lipids, which 
have a net dipolar charge, and the hydrophobic interface between both 
the arm of the dendrimers and the lipid hydrocarbon chains 
substantially influence the various interaction modes. Functional 
groups in the dendrimer's surface also make it possible to add 
additional moieties, including folate and antibodies, which are now 
frequently utilised as tumour targeting techniques that can proactively 
target specific diseases and enhance drug delivery [43]. 

 

 

Fig. 10: Diagrammatic representation of solid lipid 
nanoparticles 

 

Solid lipid nanoparticles 

Like a controlled alternative to emulsions, liposomes, and polymeric 
nanoparticles as a colloidal drug delivery system, solid lipid 
nanoparticles (SLN) were created. Solid lipids are used to create 
SLNs, which are stabilised by surfactant [44].  
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Over the other nanoparticle transporters, SLN has a number of 
advantages for delivery of drugs, including greater tolerability, 
biodegradability, high bioavailability through the ocular route, and a 
focused effect on the brain. In recent times, SLN research has 
proliferated, especially with the development of the high-pressure 
homogenization method. SLN has been created and researched for a 
number of uses. Due to their tiny size, SLN are ideal for intravenous 
injection and medication site-targeting [45]. 

Nano-emulsions  

In recent times, there has been a significant amount of interest in 
using self-emulsified drug delivery systems (SEDDS) and nano-
emulsions to improve the bioavailability of drugs with poor water 
solubility [46]. In non-homogeneous systems called nano-emulsions, 
immiscible liquids are mixed together and one is dispersed as 
droplets in the other. These systems enhance the oral bioavailability 
of medications that are only mildly water-soluble through a number 
of mechanisms. Additionally, because the oil droplets are so minute, 
there is less surface tension among them and the aqueous medium 
of a gastrointestinal system, enabling for a more even and thorough 
dispersion of drugs throughout the gut [47]. 

Alginate 

When compared to cationic and neutral polymers, this anionic muco-
adhesive polymer, which has final carboxyl groups, exhibits better 
muco-adhesive strength. Their benefits includes mucoadhesiveness, 
bio-compatibility, and biodegradation characteristics in addition to 
their adaptable physicochemical characteristics, which enable 
chemical alterations for site-specific targeting. Additionally, the 
combination of alginate nanoparticles with other polymers, surface 
customization utilising particular targeted groups, and physical or 
chemical cross-linking can all be used to modify mechanical 
properties, gel formation, and cell affinity [48, 49]. 

Methods to fabricate nanoparticles 

The appropriate and adequate technique is determined by the 
physicochemical properties of the polymer and the chosen 
medication. 

Salting out method 

This technique has the benefit of lowering the stress on the protein 
involved in the synthesis of encapsulants, and it produced high 
efficiency and was simple to scale up. The extraction of water-
miscible solvent from such an aqueous solution is what causes the 
salting-out phenomenon. The first phase involves dissolving the 
drug as well as the polymer in a vehicle, which would be 
subsequently emulsified into such an aqueous gel with a salting-out 
reagent and a colloidal stabiliser. Colloidal stabilisers and salting out 
agents, including electrolytes and non-electrolytes, have indeed been 
employed. 

By using this method, an oil/water emulsion is created that is then 
diluted with additional water to improve solvent diffusion inside the 
aqueous phase and facilitate the production of nano-spheres. The 
manufacture of ethyl cellulose, PLA, and poly-methacrylic acids 
nano-spheres uses the salting out method [50]. 

Solvent evaporation method 

This method depends on both how soluble the polymer is and how 
hydrophobic the organic solvent is. Ibuprofen's better skin 
absorption and betulinic acid nanoparticles as an alternate 
treatment for visceral leishmaniasis are two examples [51]. 

The first step is the emulsification of a polymer solution in an 
aqueous phase, which is proceeded by the evaporation of the solvent 
of the polymer, which causes the polymer to precipitate as nano-
spheres. The drug-polymer mixture is emulsified inside an aqueous 
solution that includes a surfactant or emulsifying agent to create oil 
in water (o/w) emulsion. Once a stable emulsion has been 
established, the organic solvent then is evaporated either by 
constant stirring or by lowering the pressure. To create tiny particle 
sizes, ultrasonication or high-speed homogenization may well be 
utilised. Nanoparticles are gathered by ultracentrifugation, and then 

any free drugs or stabiliser residue is removed by washing them in 
distilled water. For preservation, nanoparticles are even further 
lyophilized [52]. 

Emulsions–diffusion method 

Excellent encapsulation efficiency, the absence of homogenization, 
high batch-to-batch repeatability, ease of scaling up, ease, and 
limited size range are just a few advantages of this method. This 
method was utilised to create polylactic acid and make PLGA 
nanoparticles that were loaded with oestrogen. 

The encapsulating polymeric is saturated with water after being 
mixed in a solvent that is partially water-miscible. Next, based on the 
oil-to-polymer proportion, the polymer-water saturated solvent 
phase is emulsion in an aqueous solution that contains a stabiliser, 
resulting in solvent diffusion to the outer phase as well as the 
creation of nano-spheres or nano-capsules. Based on the solvent's 
boiling point, the solvent is eliminated in the final phase either 
through evaporation or filtration [53, 54]. 

Double emulsion and evaporation method  

Examples of drug nano-formulations created using the double 
emulsion approach includes oleuropein with increased stability and 
Rose Bengal for the treatment of breast carcinoma. 

The double emulsion method is used to load the lipophobic 
medication. Drug solutions are added to an organic solution that 
contains the polymer while being stirred constantly to create a w/o 
emulsion. The second aqueous phase then gradually incorporates 
the created emulsion. Continue spinning until the w/o/w emulsion 
forms. After the solvent has evaporated, high-speed centrifugation 
may be used to separate the nanoparticles [55, 56]. 

Coacervation or ionic gelation method 

Two distinct aqueous phases have been prepared, one for the 
polymer and the other for the polyanion sodium tripolyphosphate, 
and it varies depending on the strong electrostatic attraction 
between both the positively charged amino group of chitosan and 
the negatively charged tripolyphosphate to shape coacervates-with-
a-magnitude-in-the-nano-meter range [57-59]. 

Polymerization method 

Diffusion in the polymerization medium or adsorption onto to the 
nanoparticles after completion polymerization is the two ways that 
drugs are introduced during the polymerisation. An isotonic medium 
devoid of surfactants can be utilized to re-disperse the nanoparticle 
suspension after ultracentrifugation to remove the various stabilisers 
and surfactants that were employed throughout polymerization [60, 61]. 

Nano spray drying 

A quick, easy, repeatable, and expandable drying method known as 
spray drying provides for moderate ambient temperature that are 
ideal for heat-sensitive biopharmaceutical molecules. In contrast to 
certain other drying techniques, spray drying is a continual process 
that turns various liquids into solid particles while providing for 
alterations in dimension, distribution, structure, porosity, density, 
and chemical properties. 

Four steps are involved in spray drying: heating the drying gas, 
producing droplets, drying the droplets, and collecting the particles [62]. 

Supercritical fluid technology 

Although supercritical fluid technology is suitable for large-scale 
production and is ecologically beneficial, it requires specialised, 
expensive gear. Supercritical fluids are fluids that, even at 
temperatures higher than their critical temperature, maintain their 
homogeneity. Due to its moderately critical conditions, non-
flammability, high cost, and safety, supercritical CO2 (SC-CO2) is the 
supercritical fluid that receives the most applications [63]. 

Future of nanomedicine and drug delivery system 

Although nanoparticles and nano-drug delivery systems are widely 
understood, their actual impact on the healthcare system-including 
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in the treatment and diagnosis of cancer-remains quite restricted. In 
the end, the use of nanoparticles will develop along with our 
growing understanding of diseases at the cellular scale or that reflect 
a nanomaterial-subcellular scale equivalent biomarker identification 
to open up new pathways for diagnosis and treatment. Therefore, 
developing nanoparticle applications for the future will require 
knowledge of the molecular fingerprints of disease.  

Theoretical mathematical models of prediction, technologies for the 
evaluation of these processes, drug effect in tissues/cellular level, 
and the concept of controlled release of specific medications at the 
troubled locations are not yet reached their full potential. 

Animal experiments and interdisciplinary study, which takes a lot of 
time and money, will yield valuable information that might be used 
in drug therapy and diagnostic studies. The search for more accurate 
treatments and diagnoses is an expanding worldwide trend, as well 
as the development of nanoparticles and nano-drug delivery system 
appears to be promising. 

The creation of nanorobots and nanodevices that work in tissue 
diagnostic and repair mechanisms with full external methods of 
control has generated a significant amount of attention. But just as 
with their advantages, nanomedicines' possible drawbacks must 
also be thoroughly investigated, both for humans and the ecosystem 
as a whole. Therefore, a thorough examination of the potential acute 
or long-term harmful consequences of novel nanomaterials on 
people and the environment is necessary. The accessibility of 
nanomedicines would be another topic of study that requires more 
study input as they become more and more widespread. 

CONCLUSION 

The application of nanotechnology to medicine, particularly more 
particularly to the administration of drugs, is expected to grow quickly. 
Pharmaceutical sciences have used nanoparticles to lessen the toxicity 
and adverse effects of drugs for many years. It wasn't known until 
recent that the carrier systems itself could present dangers to the 
patient. Further than the typical risks given by compounds in the 
delivery matrix, new risks are added by the use of nanoparticles for 
medication administration. Unfortunately, there is currently no 
scientific framework for the potential (adverse) reaction of 
nanoparticles, and we know very little about the fundamentals of how 
nanoparticles react with living organisms, tissues, and animals. 

For the future development and application of sustainable 
nanomaterials in medication delivery, a conceptual understanding of 
biological responses to nanoparticles is required. In order to 
advance this topic, strong cooperation between individuals involved 
in particle toxicology and drug delivery is required for the exchange 
of ideas, techniques, and knowledge. 
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