MOLECULAR DOCKING OF AMITRIPTYLINE TO CERULOPLASMIN, RETINOL-BINDING PROTEIN, AND SERUM ALBUMIN

Authors

  • Ramchander Merugu Department of Biochemistry, University College of Science, Mahatma Gandhi University, Nalgonda, Telangana, India.
  • Kalpana V Singh Department of Chemistry and Pharmaceutical Chemistry, Government Madhav Science Postgraduate College, Ujjain, Madhya Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i2.22721

Keywords:

Human ceruloplasmin, Retinol-binding protein, Human serum albumin, Amitriptyline

Abstract

 

 Objective: A drug's efficiency depends on the binding capacity of the drug with the particular plasma protein. The less bound drug can be easily diffused through cell membranes. The present study deals with in silico studies of amitriptyline binding to three plasma proteins human ceruloplasmin (HCP), cellular retinol-binding protein (CRBP), and human serum albumin (HSA) and tries to establish the binding capacity behavior with the frontier molecular orbital approach.

Methods: Amitriptyline is selected as legend and docked with three plasma proteins HCP, HCP PDB ID 1KCW, CRBP PDB ID 5LJC, and HSA. Docking calculations were carried out using docking server. frontier molecular orbital calculations are performed through web-based computational chemistry interface WEBMO version 17.0.012e using server Buchhner.chem.hope.edu. on computational engine MOPAC.

Results: HCP and HSA predominantly show polar and hydrophobic interactions, whereas CRBP forms hydrogen bond apart from polar and hydrophobic interactions. Favorable values of inhibition constant, Ki, is obtained which is equal to 1.13 μM for CRBP, 6.00 μM for HCP, and 2.00 μM for has.

Conclusion: A studies prove that amitriptyline can bind to all three plasma proteins, namely, HCP, CRBP, and HSA. Amitriptyline binds to an HSA and HCP through polar and hydrophobic interactions while weak electrostatic interactions felicitate diffusion of amitriptyline through the plasma membrane. Comparatively, strong hydrogen bond in CRBP may make the bound drug to be released at a slow rate. Strong binding of amitriptyline to CRBP is also evident from the least value of inhibition constant, Ki, which is equal to 1.13 μM for CRBP, 6.00 μM for HCP, and 2.00 μM for has.

Downloads

Download data is not yet available.

Author Biographies

Ramchander Merugu, Department of Biochemistry, University College of Science, Mahatma Gandhi University, Nalgonda, Telangana, India.

Department of Higher Education, Govt. of Madhya Pradesh

ASSTT. PROFESSOR 

Kalpana V Singh, Department of Chemistry and Pharmaceutical Chemistry, Government Madhav Science Postgraduate College, Ujjain, Madhya Pradesh, India.

University College of Science, Mahatma Gandhi University, Nalgonda, India-508254

References

Bento I, Peixoto C, Zaitsev VN, Lindley PF. Ceruloplasmin revisited: Structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr 2007;63:240-8.

Holmberg GC. On the presence of laccase like enzymes in Nerum and it’s relation to the copper in serum. Acta Physiol Scand 1944;8:227-9.

Takahashi N, Ortel TL, Putnam FW. Single-chain structure of human ceruloplasmin: The complete amino acid sequence of the whole molecule. Proc Natl Acad Sci U S A 1984;81:390-4.

Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, et al. The X-ray structure of human ceruloplasmin at 3.1 A: Nature of the copper center. J Biol Inorg Chem 1996;1:15-23.

Linder MC. Nutritional biochemistry of copper, with emphasis on the perinatal period. In: Avigliano L, editor. Biochemical Aspects of Human Nutrition. Trivandrum, Kerala, India: Research Signpost; 2010. p. 143-79.

Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta 2012;1823:1580-93.

Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011;15:1583-606.

Vashchenko G, MacGillivray RT. Multi-copper oxidases and human iron metabolism. Nutrients 2013;5:2289-313.

Lutsenko S. Human copper homeostasis: A network of interconnected pathways. Curr Opin Chem Biol 2010;14:211-7.

Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 1999;96:10812-7.

Collins JF, Prohaska JR, Knutson MD. Metabolic crossroads of iron and copper. Nutr Rev 2010;68:133-47.

White KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta 2012;1820:411-6.

Kono S. Aceruloplasminemia: An update. Int Rev Neurobiol 2013;110:125-51.

Linder MC. Biochemistry of Copper. New York: Plenum Press; 1991.

Anderson GJ, Frazer DM, McKie AT, Vulpe CD. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis 2002;29:367-75.

Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, et al. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol 1992;224:179-205.

Lindley PF. Handbook on Metalloproteins. New York: Marcel Dekker; 2001. p. 763-811.

Lindley PF, Card G, Zaitseva I, Zaitsev V. Perspectives on Bioinorganic Chemistry. Vol. 4. Greenwich, CT, USA: JAI Press; 1999. p. 51-89.

Nakamura K, GO N. Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 2005;62:2050-66.

Almekinder J, Manda W, Soko D, Lan Y, Hoover DR, Semba RD, et al. Evaluation of plasma retinol-binding protein as a surrogate measure for plasma retinol concentrations. Scand J Clin Lab Invest 2000;60:199-203.

Baeten JM, Richardson BA, Bankson DD, Wener MH, Kreiss JK, Lavreys L, et al. Use of serum retinol-binding protein for prediction of vitamin A deficiency: Effects of HIV-1 infection, protein malnutrition, and the acute phase response. Am J Clin Nutr 2004;79:218-25.

Peters T Jr, editor. All about Albumin: Biochemistry, Genetics and Medical Applications. San Diego, London: Academic Press; 1996.

Evans TW. Review article: Albumin as a drug-biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther 2002;16 Suppl 5:6-11.

Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 1998;5:827-35.

Kragh-Hansen U, Chuang VT, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 2002;25:695-704.

Bocedi A, Notaril S, Narciso P, Bolli A, Fasano M, Ascenzi P, et al. Binding of anti-HIV drugs to human serum albumin. IUBMB Life 2004;56:609-14.

Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S, et al. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 2005;353:38-52.

Fanali G, Bocedi A, Ascenzi P, Fasano M. Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs. An optical and NMR spectroscopic study. FEBS J 2007;274:4491-502.

Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M, et al. Effect of human serum albumin on drug metabolism: Structural evidence of esterase activity of human serum albumin. J Struct Biol 2007;157:348-55.

Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr J 2010;9:69.

Koga M, Kasayama S. Clinical impact of glycated albumin as another glycemic control marker. Endocr J 2010;57:751-62.

Sbarouni E, Georgiadou P, Voudris V. Ischemia modified albumin changes - Review and clinical implications. Clin Chem Lab Med 2011;49:177-84.

Bertucci C, Pistolozzi M, De Simone A. Circular dichroism in drug discovery and development: An abridged review. Anal Bioanal Chem 2010;398:155-66.

Furukawa M, Tanaka R, Chuang VT, Ishima Y, Taguchi K, Watanabe H, et al. Human serum albumin-thioredoxin fusion protein with long blood retention property is effective in suppressing lung injury. J Control Release 2011;154:189-95.

Komatsu T, Qu X, Ihara H, Fujihara M, Azuma H, Ikeda H, et al. Virus trap in human serum albumin nanotube. J Am Chem Soc 2011;133:3246-8.

Jyothi P, Yellamma K. Molecular docking studies on the therapeutic targets of Alzheimer’s disease using natural bioactive alkaloids. Int J Pharm Pharm Sci 2016;8:108-17.

Heba M, Salem A, Khadega M, El Hallouty S, Eslam R, El Sawy E, et.al. Synthesis, molecular docking and anti-proliferative activity of new series of 1-Methyl Sulphonyl 3-indolylhetrocycles. Int J Pharm Pharm Sci 2016;8:113-23.

Bikadi Z, Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of autoDock. J Cheminform 2009;1:15.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639-62.

Solis FJ, Wets JB. Minimization by random search techniques. Math Oper Res 1981;6:19-30.

Published

01-02-2018

How to Cite

Merugu, R., and K. V. Singh. “MOLECULAR DOCKING OF AMITRIPTYLINE TO CERULOPLASMIN, RETINOL-BINDING PROTEIN, AND SERUM ALBUMIN”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 2, Feb. 2018, pp. 169-75, doi:10.22159/ajpcr.2018.v11i2.22721.

Issue

Section

Original Article(s)