A REVIEW ON PROMISING ANTIBIOTIC THERAPY BY NOVEL DELIVERY SYSTEMS

Authors

  • Priyanka R Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bengaluru - 560 035, Karnataka, India.
  • Sayani Bhattacharyya Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bengaluru - 560 035, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i5.23999

Keywords:

Antibiotics, Liposomes, Solid lipid nanoparticles, Polymeric particles, Microspheres, Dendrimers, Inhaled antibiotics

Abstract

 The introduction of a new moiety of drugs for antibiotics in the market is getting declined. Antibiotic resistance is a major threat to human health worldwide. Many life-saving antibiotic drugs are rendered ineffective. Resistant bacterial infections are difficult to treat because of the poor response to antibiotics. Hence, utilizing the novel methods/approaches for the development of formulation into its novel delivery can prevent bacterial resistance. This review article explores the various promising approaches for delivery of antibiotics in the form of liposomes, solid lipid nanoparticles, microspheres, dendrimers, inhaled antibiotics, and polymeric particles. These approaches of delivery have been proven to provide innovative and novel delivery of antibiotic by enhancing the therapeutic effectiveness, targeting at the site of action, enhanced activity, and penetrability at intracellular pathogens, thereby reducing side effects, toxicity, and the chances of bacterial resistance.

Downloads

Download data is not yet available.

Author Biography

Priyanka R, Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bengaluru - 560 035, Karnataka, India.

pharmaceutics

References

Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med 2015;2015:246012.

Abed N, Couvreur P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014;43:485-96.

Jamil B, Syed MA. Antibiotics: Past, present and future. J Biomol Res Ther 2016;5:2.

Crouch E, Dickes L, Kahle A. Review on antibiotic resistance. Adv Pharmacoepidemiol Drug Saf 2015;4:1-3.

Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 2015;104:872-905.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417-33.

News Release. WHO’s First Global Report on Antibiotic Resistance Reveals Serious, Worldwide Threat to Public Health; 2014. Available from: http://www.who.int/mediacentre/news/releases/2014/amr-report/en.

Smith AW. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 2005;57:1539-50.

Deshmukh RR, Gawale SV, Bhagwat MK, Ahire PA, Derle ND. A review on: Liposomes. World J Pharm Pharm Sci 2016;5:506-17.

Kalepu S, Sunilkumar KT, Betha S, Mohavarma M. Liposomal drug delivery system-A comprehensive review. Int J Drug Del Res 2013;5:62-75.

Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv 2012;9:1325-32.

Drulis-Kawa Z, Jach AD. Liposomes as delivery system for antibiotics. Int J Pharm 2009;387:187-98.

Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against pseudomonas aeruginosa: A time-kill study. Int J Antimicrob Agents 2006;27:247-52.

Ito M, Ishida E, Tanabe F, Mori N, Shigeta S. Inhibitory effect of liposome-encapsulated penicillin G on growth of listeria monocytogenes in mouse macrophages. Tohoku J Exp Med 1986;150:281-6.

Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection 1994;22:338-42.

Sessa G, Weissmann G. Effects of four components of the polyene antibiotic, filipin, on phospholipid spherules (liposomes) and erythrocytes. J Biol Chem 1968;243:4364-71.

Schumacher I, Margalit R. Liposome-encapsulated ampicillin: Physicochemical and antibacterial properties. J Pharm Sci 1997;86:635-41.

Desiderio JV, Campbell SG. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J Infect Dis 1983;148:563-70.

Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973;36:292-6.

Kadry AA, Al-Suwayeh SA, Adel RA, Allah A, Bayomi MA. Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother 2005;54:1103-8.

Muppidi K, Wang J, Betageri G, Pumerantz AS. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob Agents Chemother 2011;55:4537-42.

Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 2010;6:753-9.

Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009;71:349-58.

Yadav N, Khatak S, Sara UV. Solid lipid nanoparticles-a review. Int J Appl Pharm 2013;5:8-18.

Mehnert W, Mader K. Solid lipid nanoparticles-production, characterization and applications. Adv Drug Deliv Rev 2012;64:83-101.

Muhlen AZ, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlles drug delivery-drug release and release mechanism. Eur J Pharm Biopharm 1998;45:149-55.

Kalhapure RS, Mocktar C, Sikwal DR, Sonawane SJ, Kathiravan MK, Skelton A, et al. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf B Biointerfaces 2014;117:303-11.

Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002;238:241-5.

Jain D, Banerjee R. Comparision of ciprofloxacin hydrochloride protein, lipid and chitosan nanoparticles for drug delivery. J Biomed Mater Res B 2008;86:105-12.

Xie S, Zhu L, Domg Z, Wang X, Wang Y, Li X, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanparticles: Influence of fatty acids. Colloids Surf B 2011;83:382-7.

Wang Y, Zhu L, Dong Z, Xie S, Chen X, Lu M, et al. Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids Surf B Biointerfaces 2012;98:105-11.

Wang XF, Zhang SL, Zhu LY, Xie SY, Dong Z, Wang Y, et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J 2012;191:115-20.

Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microb Rev 1991;4:35-51.

Kumar SP, Arivuchelvan A, Jagadeeswaran A, Subramanian N, Kumar SC, Mekala P. Formulation, optimization and evaluation of solid lipid nanoparticles for sustained oral delivery. Asian J Pharm Clin Res 2015;8:231-6.

Wissing S, Lippacher A, Müller R. Investigations on the occlusive properties of solid lipid nanoparticles (SLN). J Cosmet Sci 2001;52:313-24.

Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J Acute Dis 2013;2:282-6.

Zamarioli CM, Martins RM, Carvalho EC, Freitas LA. Nanoparticles containing curcuminoids (Curcuma longa): Development of topical delivery formulation. Rev Bras Farm 28;25:53-60.

Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005;85:227-34.

Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014;78:63-76.

Imbuluzqueta E, Lemaire S, Gamazo C, Elizondo E, Ventosa N, Veciana J, et al. Cellular pharmacokinetics and intracellular activity against listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J Antimicrob Chemother 2012;67:2158-64.

Briones E, Colino CI, Lanao JM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Rel 2008;125:210-27.

Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006;48:171-6.

Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M. Development of azithromycin-PLGA nanoparticles, physiochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B 2010;80:34-9.

Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and bacillus anthracis. Bioorg Med Chem 2008;16:2412-8.

Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, et al. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 2007;17:53-6.

Fattal E, Youssef M, Couvreur P, Andremont A. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother 1989;33:1540-3.

Jeong YI, Na HS, Seo DH, Kim DG, Lee HC, Jang MK, et al. Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int J Pharm 2008;352:317-23.

Fresta M, Puglisi G, Giammona G, Cavallaro G, Micali N, Furneri PM. Pefloxacine mesilate-and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: Characterization of n the colloidal drug carrier formulation. J Pharm Sci 1995;84:895-902.

Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly (D, L-lactide-co-glycolide) and poly (ε-caprolactone) nanoparticles. Nanomedicine 2009;4:519-30.

Espuelas MS, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. In vitro antileishmanial activity of amphotericin B loaded in poly(Æ-caprolactone) nanospheres. J Drug Target 2002;10:593-9.

Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 2004;275:171-87.

Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm 2006;314:72-82.

Dillen K, Bridts C, Van der Veken P, Cos P, Vandervoort J, Augustyns K, et al. Adhesion of PLGA or Eudragit®/PLGA nanoparticles to Staphylococcus and Pseudomonas. Int J Pharm 2008;349:234-40.

Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 2011;32:6606-13.

Ungaro F, d’Angelo I, Coletta C, di Villa Bianca RD, Sorrentino R, Perfetto B, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Rel 2012;157:149-59.

Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R, et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 2012;51:392-9.

Umamaheshwari RB, Jain NK. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target 2003;11:415-23.

Pichavant L, Bourget C, Durrieu MC, Héroguez V. Synthesis of pH-sensitive particles for local delivery of an antibiotic via dispersion ROMP. Macromolecules 2011;44:7879-87.

Wróblewska M, Winnicka K. The effect of cationic polyamidoamine dendrimers on physicochemical characteristics of hydrogels with erythromycin. Int J Mol Sci 2015;16:20277-89.

Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 2005;295:221-33.

Kim Y, Zeng F, Zimmerman SC. Peptide dendrimers from natural amino acids. Chem Eur J 1999;5:2133-8.

Tuuttila T, Lipsonen J, Lahtinen M, Huuskonen J, Rissanen K. Synthesis and characterization of chiral azobenzene dye functionalized Janus dendrimers. Tetrahedron 2008;64:10590-7.

Berger A, Gebbink RJ, van Koten G. Transition metal dendrimer catalysts. Dendrimer Catalysis. Berlin, Heidelberg: Springer; 2006. p. 1-38.

Sujitha V, Bhattacharya S, Prakasam K. Dendrimers and its application. Int Res J Pharm 2011;2:25-32.

Strydom SJ, Rose WE, Otto DP, Liebenberg W, de Villiers MM. Poly(amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine 2013;9:85-93.

Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska EA. The effect of PAMAM dendrimers on the antibacterial activity of antibiotics with different water solubility. Molecules 2013;18:8607-17.

Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, et al. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine 2011;7:935-44.

Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur J Med Chem 2007;42:1032-8.

Nguyen PM, Zacharia NS, Verploegen E, Hammond PT. Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles. Chem Mater 2007;19:5524-30.

Ma M, Cheng Y, Xu Z, Xu P, Qu H, Fang Y, et al. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 2007;42:93-8.

Bosnjakovic A, Mishra MK, Ren W, Kurtoglu YE, Shi T, Fan D, et al. Poly(amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Nanomedicine 2011;7:284-94.

Prasad BS, Gupta VR, Devanna N, Jayasurya K. Microspheres as drug delivery system-A review. J Global Trends Pharm Sci 2014;5:1961-72.

Kadam NR, Suvarna V. Microsphere: A brief review. Asian J Biomed Pharm Sci 2015;5:13-9.

Hejazi R, Amiji M. Stomach-specific anti-H. Pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres. Int J Pharm 2002;235:87-94.

Mallikarjun V, Sriharsha SN. Formulation and in vitro evaluation of Cefixime microspheres. Int J Pharm Bio Sci 2013;3:285-9.

Melake NA, Mahmoud HA, Al-Semary MT. Bactericidal activity of various antibiotics versus tetracycline-loaded chitosan microspheres against Pseudomonas aeruginosa biofilms. Afr J Microb Res 2012;6:5387-98.

Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: A critical evaluation. Eur J Pharm Biopharm 2014;86:23-30.

Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: A systematic review. Eur Respir J 2014;44:382-93.

Shaji J, Shaikh M. Drug-resistance tuberculosis: Recent approach in polymer based nanomedicine. Int J Pharm Pharm Sci 2016;8:1-6.

Published

01-05-2018

How to Cite

R, P., and S. Bhattacharyya. “A REVIEW ON PROMISING ANTIBIOTIC THERAPY BY NOVEL DELIVERY SYSTEMS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 5, May 2018, pp. 18-24, doi:10.22159/ajpcr.2018.v11i5.23999.

Issue

Section

Review Article(s)