THE USE OF CLINOPTILOLITES AS CARRIER OF METFORMIN HYDROCHLORIDE IN DRUG DELIVERY SYSTEM: IN VITRO DRUG RELEASE STUDY
DOI:
https://doi.org/10.22159/ajpcr.2018.v11i11.24366Keywords:
Clinoptilolites, Metformin hydrochloride, Drug delivery systemAbstract
Objective: As an antidiabetic drug, metformin hydrochloride (HCl) has been well known to possess low oral bioavailability and short half-life. In this study, we prepared the drug delivery system (DDS) of metformin HCl and clinoptilolite as its carrier. The in vitro drug release profile was further investigated.
Methods: DDS was made by encapsulating metformin HCl on clinoptilolite using the wet impregnation method at various pH and initial concentration of metformin HCl. Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N2 Sorption Analyzer were used to characterize the as-synthesized DDS. Drug release study was conducted by stirring the DDS in simulated gastric fluid and simulated intestinal fluid over 12 h.
Results: The encapsulation process was achieved optimally at pH 7.0 and initial concentration of metformin HCl of 300 mg/l (CLI2-300 denoted DDS). The results of FTIR and N2 sorption analyzer confirmed the existence of metformin HCl on clinoptilolites. Meanwhile, the XRD result showed that the crystallinity of clinoptilolites remained unchanged after the encapsulation process. The cumulative drug release in the simulated gastric fluid was found to be higher than that in the simulated intestinal fluid, which indicated the potent influence of pH on the release properties of the drugs. The drug release kinetics of metformin HCl from clinoptilolite was best fitted into the Korsmeyer-Peppas model with non-Fickian transport mechanism.
Conclusion: We found that clinoptilolite was suitable for DDS application, particularly as a carrier of metformin HCl.
Downloads
References
Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 2010;1:212-28.
Mihardja L, Soetrisno U, Soegondo S. Prevalence and clinical profile of diabetes mellitus in productive aged urban Indonesians. J Diabetes Invest 2014;5:507-12.
Hostalek U, Gwilt G, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs 2015;75:1071-94.
Deepika D, Satish SK, Lalit S. Current updates on anti-diabetic therapy. J Drug Deliv Ther 2013;3:121-6.
Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013;4:270-81.
Ito H, Ishida H, Takeuchi Y, Antoku S, Abe M, Mifune M, et al. Long-term effect of metformin on blood glucose control in non-obese patients with Type 2 diabetes mellitus. Nutr Metab (Lond) 2010;7:83-91.
Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with Type 2 diabetes and kidney disease: A systematic review. J Am Med Assoc 2014;312:2668-75.
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011;50:81-98.
Nayak AK, Pal D, Santra K. Tamarind seed polysaccharide-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 2014;103:154-63.
de Jager J, Kooy A, Lehert P, Wulffelé MG, van der Kolk J, Bets D, et al. Long term treatment with metformin in patients with Type 2 diabetes and risk of Vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ Br Med J 2010;340:1-7.
Dumitrescu R, Mehedintu C, Briceag I, Purcarea VL, Hudita D. Metformin-clinical pharmacology in PCOs. J Med Life 2015;8:187-92.
Mosab A. Approaches to achieve an oral controlled release drug delivery system using polymers: A recent review. Int J Pharm Pharm Sci 2015;7:16-21.
Snima KS, Jayakumar R, Unnikrishnan AG, Nair SV, Lakshmanan VK. O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym 2012;89:1003-7.
Jose P, Sundar K, Anjali CH, Ravindran A. Metformin-loaded BSA nanoparticles in cancer therapy: A new perspective for an old antidiabetic drug. Cell Biochem Biophys 2014;71:627-36.
Das S, Samanta A, De HS. Formulation, in-vitro release kinetics and stability interpretation of sustained release tablets of metformin hydrochloride. Int J Pharm Pharm Sci 2015;7:418-22.
Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: Formulation, characterization and in-vitro evaluation. Biomed Pharmacol J 2015;8:83-9.
Nayak AK, Pal D, Santra K. Swelling and drug release behavior of metformin HCl-loadedtamarind seed polysaccharide-alginate beads. Int J Biol Macromolec 2016;82:1023-7.
Saini N, Sodhi RK, Bajaj L, Pandey RS, Jain UK, Katare OP, et al. Intravaginal administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermosensitive gel for thetreatment of polycystic ovary syndrome: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2016;144:161-9.
Hirvonen J, Laaksonen T, Peltonen L, Santos H, Lehto VP, Heikkilä T, et al. Feasibility of silicon-based mesoporous materials for oral drug delivery applications. Dosis 2008;24:129-49.
Amorim R, Vilaça N, Martinho O, Reis RM, Sardo M, Rocha J. Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 2012;116:25642-50.
Pavelić K, Hadžija M, Bedrica L, Pavelić J, Ãikić I, Katić M, et al. Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. J Mol Med 2000;78:708-20.
Topashka-Ancheva M, Beltcheva M, Metcheva R, Rojas JA, Rodriguez- De la Fuente AO, Gerasimova T, et al. Modified natural clinoptilolite detoxifies small mammal’s organism loaded with lead II: Genetic, cell, and physiological effects. Biol Trace Elem Res 2012;147:206-16.
FarÃas T, de Ménorval LC, Zajac J, Rivera A. Benzalkonium chloride and sulfamethoxazole adsorption onto natural clinoptilolite: Effect of time, ionic strength, pH and temperature. J Colloid Interface Sci 2011;363:465-75.
Francisco M, Mlinar AN, Yoo B, Bell AT, Prausnitz JM. Recovery of glucose from an aqueous ionic liquid by adsorption onto a zeolite-based solid. Chem Eng J 2011;172:184-90.
Rimoli MG, Rabaioli MR, Melisi D, Curcio A, Mondello S, Mirabelli R, et al. Synthetic zeolites as a new tool for drug delivery. J Biomed Mater Res A 2008;87:156-64.
Jevtić S, Grujić S, Hrenović J, Rajić N. Surfactant-modified clinoptilolite as a salicylate carrier, salicylate kinetic release and its antibacterial activity. Microporous Mesoporous Mater 2012;159:30-5.
Anghel I, Grumezescu AM, Anghel AG, Chireac I, Marutescu L, Mihaiescu DE, et al. Antibiotic potentiator effect of the natural and synthetic zeolites with well defined nanopores with possible ent clinical applications. Farmacia 2012;60:688-95.
Gennaro B, Catalanotti L, Cappelletti P, Langella A. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study. Colloids Surf B Biointerfaces 2015;30:101-9.
Guan H, Bestland E, Zhu C, Zhu H, Albertsdottira D, Hutsona J, et al. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. J Hazard Mater 2010;183:616-21.
Nallaguntla L, Muzib Y, Aukunuru J, Balekari U. Novel nanoparticles for the oral delivery of low molecular weight heparin: In vitro and in vivo assessment. Asian J Pharm Clin Res 2017;10:254-61.
Heister E, Neves V, Lamprecht C, Silva SR, Coley HM, McFadden J. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon 2012;50:622-32.
Eren ZS, Tunçer S, Gezer G, Yildirim LT, Banerjee S, Yilmaz A. Improved solubility of celecoxib by inclusion in SBA-15 mesoporous silica, drug loading in different solvents and release. Microporous Mesoporous Mater 2016;235:211-23.
Vaingankar P, Amin P. Continuous melt granulation to develop high drug loaded sustained release tablet of metformin HCl. Asian J Pharm Sci 2017;12:37-50.
Ghasemi F, Ghasemi K, Rezvani AR, Shokrollahi A, Refahi M, GarcÃa- Granda S, et al. A novel salt of antidiabetic drug metformin resulting from a proton transfer reaction: Synthesis, characterization, crystal structure and solution studies. J Mol Struct 2017;1131:30-5.
Hou D, Gui R, Hu S, Huang Y, Feng Z, Ping Q. Preparation and characterization of novel drug-inserted-montmorillonite chitosan carriers for ocular drug delivery. Adv Nanopart 2015;4:70-84.
Youssef HF, Hegazy WH, Abo-almaged HH. Preparation and characterization of micronized zeolite Na-A: Cytotoxic activity of silver exchanged form. J Porous Mater 2015;22:1033-41.
Favvas EP, Tsanaktsidis CG, Sapalidis AA, Tzilantonis GT, Papageorgiou SK, Ch MA. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater 2016;225:385-91.
Khataee A, Bozorg S, Khorram S, Fathinia M, Hanifehpour Y, Joo SW. Conversion of natural clinoptilolite microparticles to nanorods by glow discharge plasma: A novel fe-impregnated nanocatalyst for the heterogeneous fenton process. Ind Eng Chem Res 2013;52:18225-33.
Martinho O, Vilaça N, Castro PJ, Amorim R, Fonseca AM, Baltazar F, et al. In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Adv 2015;5:28219-27.
Jamalzadeh Z, Haghighi M, Asgari N. Synthesis and physicochemical characterizations of nanostructured Pd/carbon-clinoptilolite-CeO2 catalyst for abatement of xylene from waste gas streams at low temperature. J Ind Eng Chem 2013;20:2735-44.
Król M, Mozgawa W, Morawska J, Pichór W. Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous Mesoporous Mater 2014;196:216-22.
FarÃas T, Ruiz-Salvador AR, Velazco L, de Ménorval LC, Rivera A. Preparation of natural zeolitic supports for potential biomedical applications. Mater Chem Phys 2009;118:322-8.
Nezamzadeh-Ejhieh A, Tavakoli-Ghinani S. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. C R Chim 2013;17:49-61.
Narin G, Albayrak CB, Ülkü S. Preparation and characterization of antibacterial cobalt exchanged natural zeolite/poly(vinyl alcohol) hydrogels. J Sol Gel Sci Technol 2014;69:214-30.
TomeÄková V, Reháková M, MojžiÅ¡ová G, Magura J, Wadsten T, Zelenáková K. Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous Mesoporous Mater 2012;147:59-67.
Dziedzicka A, Sulikowski B, Ruggiero-Mikołajczyk M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal Today 2015;259:50-8.
Åukarska M, Jankowska A, GapiÅ„ski J, Valable S, Anfray C, Ménard, B, et al. Synthesis and encapsulation of fluorescein in zeolite Y. Microporous Mesoporous Mater 2016;236:79-84.
Putra IM, Mustika IG. Potensi zat aktif antikanker solasodin terenkapsulasi pada zeolit klinoptilolit sebagai sistem penghantar obat (drug delivery system). Cakra Kimia 2016;4:103-12.
Rabiei M, Sabahi H, Rezayan AH. Gallic acid-loaded montmorillonite nanostructure as a new controlled release system. Appl Clay Sci 2016;119:236-42.
Putra IM, Sitanggang KW, Suarya P, Simpen IN, Cipta I. In vitro controlled drug release of antidiabetic metformin HCl from citric acid activated natural montmorillonite. Asian J Chem 2018;30:63-5.
Ceci-Ginistrelli E, Pontremoli C, Pugliese D, Barbero N, Boetti NG, Barolo C. Drug release kinetics from biodegradable UV-transparent hollow calcium-phosphate glass fibers. Mater Lett 2017;191:116-8.
Joshi GV, Patel HA, Kevadiya BD, Bajaj HC. Montmorillonite intercalated with vitamin B1 as drug carrier. Appl Clay Sci 2009;45:248-53.
Kharwade RS, More SM, Mahajan UN. Formulation and evaluation of gastroretentive floating tablet using Hibiscus rosa-sinensis mucilage. Asian J Pharm Clin Res 2017;10:444-8.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.