RHIZOSPHERE MICROBIOME: AN EMERGING FRONTIER IN CAUSING AND CURING INFECTIOUS DISEASES

Authors

  • Renu Chaudhary Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Meenakshi Balhara Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Mrridula Dangi Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Mehak Dangi Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Anil K Chhillar Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i6.25299

Keywords:

Beneficial microbes, Health, Pathogenic, Rhizosphere, Rhizobacteria

Abstract

Prevalence of pathogenic microorganisms in the rhizosphere causing infectious diseases in plants and humans has increased considerably due to a high content of nutrients. Such pathogenic infections are of huge concern in agriculture, health care, and medical arenas. Rhizosphere microbiome is a microbial hotspot,†not only for pathogenic microorganism but also for unlimited beneficial microorganisms. Therefore, this microbiome has immense potential in the shaping of earth from natural vegetation to the intense agricultural production to human health. Rhizosphere microorganism from unexplored habitats is a promising approach to overcome the escalating threat of such pathogenic infections. Hence, efforts are being made to isolate more and more rhizobacteria that are beneficial for better plant productivity and for treating human diseases. Thus, present review highlights and discusses the available literature on beneficial/pathogenic microorganisms belonging to rhizosphere and their impact on plants and human diseases. Furthermore, it sheds light on how this novel knowledge helps in deriving maximum benefits out of this naturally occurring population for the betterment of plant and human health.

Downloads

Download data is not yet available.

References

Teplitski M, Warriner K, Bartz J, Schneider KR. Untangling metabolic and communication networks: Interactions of enterics with phytobacteria and their implications in produce safety. Trends Microbiol 2011;19:121-7.

Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, et al. Out of the ground: Aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in australia. Environ Microbiol 2012;14:2058-70.

Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 2013;37:634-63.

Mahajan GB, Balachandran L. Sources of antibiotics: Hot springs. Biochem Pharmacol 2017;134:35-41.

Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, et al. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res 2014;169:325-36.

Herrmann J, LukežiÄ T, Kling A, Baumann S, Hüttel S, Petković H, et al. Strategies for the discovery and development of new antibiotics from natural products: Three case studies. Curr Top Microbiol Immunol 2016;398:339-63.

Ahmad I, Ahmad F, Pichtel J. Microbes and Microbial Technology: Agricultural and Environmental Applications. Netherlands: Springer Science+Business Media; 2011. p. 1-516.

Lau JA, Lennon JT. Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. New Phytol 2011;192:215-24.

Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 2012;28:1327-50.

Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 2016;174:14-25.

Saharan BS, Nehra V. Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res 2011;2011:1-30.

Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci 2012;17:478-486.

DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK, et al. Selective progressive response of soil microbial community to wild oat roots. ISME J 2009;3:168-78.

Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, et al. Bacterial diversity in rhizosphere soil from antarctic vascular plants of admiralty bay, maritime antarctica. ISME J 2010;4:989-1001.

Uroz S, Buée M, Murat C, Frey-Klett P, Martin F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2010;2:281-8.

Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011;332:1097-100.

Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, et al. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: Many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 2011;75:497-506.

Pires AC, Cleary DF, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler LC, et al. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 2012;78:5520-8.

Inceoğlu Ö, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 2011;6:e23321.

Gomes NC, Cleary DF, Pinto FN, Egas C, Almeida A, Cunha A, et al. Taking root: Enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 2010;5:e14065.

Torres-Cortés G, Millán V, Fernández-González AJ, Aguirre-Garrido JF, Ramírez-Saad HC, Fernández-López M, et al. Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 2012;357:275-288.

Bulgarelli D, Rott M, Schlaeppi K, van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 2012;488:91-5.

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012;488:86-90.

Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, et al. Rhizosphere microbiomes of potato cultivated in the high andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol 2017; 93: pii: fiw242.

Garcia A, Polonio JC, Polli AD, Santos CM, Rhoden SA, Quecine MC, et al. Rhizosphere bacteriome of the medicinal plant sapindus saponaria L. Revealed by pyrosequencing. Genet Mol Res 2016;3:15(4).

Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S, et al. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A 2016;113:E7996-E8005.

Ibekwe AM, Ors S, Ferreira JF, Liu X, Suarez DL. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Sci Total Environ 2017;1:1485-95.

Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 2011;92:296-303.

Chapelle E, Mendes R, Bakker PA, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME J 2016;10:265-8.

Dou D, Zhou JM. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host Microbe 2012;12:484-95.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614-29.

Qiang X, Weiss M, Kogel KH, Schäfer P. Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 2012;13:508-18.

Doornbos RF, Van Loon LC, Bakker PA. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 2012;32:227-43.

Ferrara FI, Oliveira ZM, Gonzales HH, Floh EI, Barbosa HR. Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 2012;353:409-17.

Kavamura VN, Santos SN, Silva JL, Parma MM, Avila LA, Visconti A, et al. Screening of brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 2013;168:183-91.

Sharma P, Sardana V, Kandola SS. Response of groundnut (Arachis hypogaea L.) to rhizobium inoculation. Libyan Agric Res Center J Intern 2011;2:101-4.

Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 2016;11:e0152478.

Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 2015;6:745.

Bakhshandeh E, Rahimian H, Pirdashti H, Nematzadeh GA. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern iran. J Appl Microbiol 2015;119:1371-82.

Pindi PK, Satyanarayana SD. Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestici 2012;3:124.

Freitas MA, Medeiros FH, Carvalho SP, Guilherme LR, Teixeira WD, Zhang H, et al. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front Plant Sci 2015;6:596.

Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 2016;105:162-73.

Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 2013;70:403-10.

Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD, et al. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 2015;46:7-21.

Sahoo RK, Bhardwaj D, Tuteja N. Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. Plant Acclimation to Environmental Stress. New York: Springer Science Plus Business Media; 2013. p. 403-32.

Janaki T. Biocontrol of fusarium oxysporum in unsterilized soil by novel streptomyces cacaoi subsp cacaoi [M20]. Int J Pharm Pharm Sci 2017;9:3.

Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Gielen J, Bärmeier H, et al. Prospective evaluation of emerging bacteria in cystic fibrosis. J Cyst Fibros 2005;4:41-8.

Parke JL, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 2001;39:225-58.

Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 2005;7:1673-85.

Egamberdieva D, Wirth S, Alqarawi AA, Abd Allah EF. Salt tolerant methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere. Saudi J Biol Sci 2015;22:585-90.

Tyler HL, Triplett EW. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 2008;46:53-73.

Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AH. Differential interaction of salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 2007;1:620-31.

Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM, et al. Friend or foe: Genetic and functional characterization of plant Endophytic pseudomonas aeruginosa. Environ Microbiol 2013;15:764-79.

Aujoulat F, Marchandin H, Zorgniotti I, Masnou A, Jumas-Bilak E. Rhizobium pusense is the main human pathogen in the genus agrobacterium/rhizobium. Clin Microbiol Infect 2015;21:472.e1-5.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A, et al. Strategies of vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol 2015;6:702.

Koh EI, Henderson JP. Microbial copper-binding siderophores at the host-pathogen interface. J Biol Chem 2015;290:18967-74.

Blaser M, Bork P, Fraser C, Knight R, Wang J. The microbiome explored: Recent insights and future challenges. Nat Rev Microbiol 2013;11:213-7.

Chen KC, Ravichandran A, Guerrero A, Deng P, Baird SM, Smith L, et al. The Burkholderia contaminans MS14 ocfC gene encodes a xylosyltransferase for production of the antifungal occidiofungin. Appl Environ Microbiol 2013;79:2899-905.

Kang MJ, Strap JL, Crawford DL. Isolation and characterization of potent antifungal strains of the Streptomyces violaceusniger clade active against Candida albicans. J Ind Microbiol Biotechnol 2010;37:35-41.

Indupalli MD, Muvva V, Munaganti RK. Streptomyces cellulosae vjds-1, a promising source for potential bioactive compounds. Int J Pharm Pharm Sci 2015;7:7.

Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005;71:4951-9.

Das P, Mukherjee S, Sen R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour Technol 2009;100:1015-9.

Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. Microbiology 2016;162:191-205.

Published

07-06-2018

How to Cite

Chaudhary, R., M. Balhara, M. Dangi, M. Dangi, and A. K. Chhillar. “RHIZOSPHERE MICROBIOME: AN EMERGING FRONTIER IN CAUSING AND CURING INFECTIOUS DISEASES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 6, June 2018, pp. 65-69, doi:10.22159/ajpcr.2018.v11i6.25299.

Issue

Section

Review Article(s)