Synthesis and anti–microbial activity of 1,2,3–triazole tethered nitroguiacol ethers

Authors

  • Sridhar Rachakonda Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur 522502, A.P., India.
  • Fatima Naaz Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi–110 062, India.
  • Intzar Ali Laboratory for Infection Biology, Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon–122 413, India.
  • Prasad K. R. S. Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur 522502, A.P., India.
  • V. Basaveswara Rao Mandava Department of Chemistry, Krishna University, Machilipatnam 521 001, A.P., India.
  • Shafi Syed Department of Chemistry, School of Chemical and Lifescience, Jamia Hamdard, New Delhi-110062, India.

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i5.29603

Keywords:

Nitroguiacol, 1, 2, 3-triazoles, antibacterial, antifungal

Abstract

Nitro aromatic/nitrophenols have been widely distributed in nature and are mostly isolated from marine microorganisms and had shown a broad spectrum of anti–microbial activities against a wide range of microbial pathogens. The objective of the present work is to Synthesize some new 1,2,3–triazole tethered nitroguiacol ethers and evaluated of their anti–bacterial and anti–fungal activities. A focused library of 1,2,3-triazole tethered nitroguiacol ethers were prepared by employing Cu (I) catalyzed click chemistry reaction and evaluated for their antimicrobial activities by broth microdilution method. Among the tested compounds, compounds 8e, 8f, 8g, and 8i exhibited broad–spectrum activity against selected pathogenic strains, with the MIC of 8 µg/mL for gram–positive bacteria (Staphylococcus aureus), 16 µg/mL for Pseudomonas aeruginosa (gram–negative bacteria), and Candida species, respectively. Future investigations with this class of compounds may lead to the development of potential candidates for antimicrobial drug discovery.

 

Downloads

Download data is not yet available.

References

E. Tacconelli, N. Magrini, Global Priority list of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. WHO. (2017).

I. Schuhmann, C. B. F. Yao, W. Al-Zereini, H. Anke, E. Helmke, H. Laatsch, J. Antibiot. 62 (2009) 453–460. doi:10.1038/ja.2009.71.

K. Ohta, M. Takagi, Phytochem.16 (1977) 1085–1086.

E. Y. Jeong, J. H. Jeon, C. Lee, H. Lee, Food Chem. 115 (2009) 1006–1010. doi.org/10.1016/j.foodchem.2009.01.021.

K. Ohta, Proc. Int. Seaweed Symp. 9 (1979) 01–411.

J. P. Abad, R. Amils, Antimicrob. Agents Chemother. 34 (1990) 1908-1914.

M. Chen, S. J. Lu, G. Yuag, S. Yang, X. Heterocycl. Commun. 6 (2000) 421-426. doi.org/10.1515/HC.2000.6.5.421.

S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian. J. 6 (2011) 2696 – 2718. doi:10.1002/asia.201100432.

K. M. Banu, A. Dinakar, C. Ananthanarayanan, Indian J. Pharm. Sci. 61 (1999) 202-205.

S. Shafi, M. M. Alam, M. Naveen, M. Chaitanya, G. Vanaja, M. K. Arunasree, P. Reddanna, M. S. Alam, Eur. J. Med. Chem. 49 (2012) 324-333. doi.org/10.1016/j.ejmech.2012.01.032.

M. J. Soltis, H. J. Yeh, K. A. Cole, N. Whittaker, R. P. Wersto, E. C. Kohn, Drug Metab. Dispos. 24 (1996) 799 – 806.

S. Haider, M. S. Alam, H. Hamid, Inflamm. Cell Sign. 1 (2014) e95. doi: 10.14800/ics.95.

Y. C. Duan, Y. C. Ma, E. Zhang, X. J. Shi, M. M. Wang, X. W. Ye, H. M. Liu, Eur. J. Med. Chem. 62 (2013) 11-19. doi.org/10.1016/j.ejmech.2012.12.046

A. Kamal, S. Prabhakar, M. J. Ramaiah, P. V. Reddy, C. R. Reddy, A. Mallareddy, N. T. Shankaraiah, L. N. Reddy, S. N. C. V. L. Pushpavalli, M. Pal-Bhadra, Eur. J. Med. Chem. 46 (2011) 3820-3831. doi.org/10.1016/j.ejmech.2011.05.050.

H. Elamari, R. Slimi, G. G. Chabot, L. Quentin, D. Scherman, C. Girard, Eur. J. Med. Chem. 60 (2013) 360-364. doi.org/10.1016/j.ejmech.2012.12.025.

P. Singh, R. Raj, V. Kumar, M. P. Mahajan, P. M. S. Bedi, T. Kaur, A. K. Saxena, Eur. J. Med. Chem. 47 (2012) 594-600. doi.org/10.1016/j.ejmech.2011.10.033.

F. Mir, S. Shafi, M. S. Zaman, N. P. Kalia, V. S. Rajput, M. Chaitanya, M. Naveen, I. A. Khan, M. S. Alam, Eur. J. Med. Chem. 76 (2014) 274-283. doi.org/10.1016/j.ejmech.2014.02.017.

D. Addla, A. Jallapally, D. Gurram, P. Yogeeswari, D. Sriram, S. Kantevari, Design, Bioorg. Med. Chem. Lett. 24 (2014) 1974-1979. doi.org/10.1016/j.bmcl.2014.02.061.

J. M. Altimari, S. C. Hockey, H. I. Boshoff, A. Sajid, L. C. Henderson, Chem. Med. Chem. 10 (2015) 787-91. doi: 10.1002/cmdc.201500051.

T. Ismail, S. Shafi, I. Hyder, T. Sidiq, A. Khajuria, M. S. Alam, H. M. S. Kumar, Arch. Pharm. 348 (2015) 796-807. doi: 10.1002/ardp.201400398.

N. Boechat, L. Mde Ferreira, L. C. Pinheiro, A. M. Jesus, M. M. Leite, C. C. Junior, A. C. Aguiar, I. M. Andrade, A. U. Krettli, Chem. Biol. Drug. Des. 84 (2014) 325-332. doi: 10.1111/cbdd.12321.

M. Jilino, F. G. Stevens, J. Chem. Soc. Perkin Trans. 1 (1998) 1677-1684. doi: 10.1021/acs.jmedchem.6b00247.

I. Mohammed, K. I. Reddy, G. Singh, N. Sharova, G. Lichinchi, J. Dang, M. Stevenson, T. M. Rana, J. Med. Chem. 59 (2016) 7677–7682. doi: 10.1021/acs.jmedchem.6b00247.

M. Whiting, J. C. Tripp, Y. C. Lin, W. Lindstrom, A. J. Olson, J. H. Elder, K. B. Sharpless, V. V. Fokin, J. Med. Chem. 49 (2006) 7697–7710. doi:10.1021/jm060754+.

Y. Saito, V. Escuret, D. Durantel, F. Zoulim, R. F. Schinazic, L. A. Agrofoglio, Bioorg. Med. Chem. 11 (2003) 3633 –3639. doi.org/10.1016/S0968-0896(03)00349-3.

T. T. Guimaraes, M. D. C. F. R. Pinto, J. S. Lanza, M. N. Melo, R. L. D. Monte-Neto, I. M. M. D. Melo, E. B. T. Diogo, V. F. Ferreira, C. A. Camara, W. O. Valença, R. N. D. Oliveira, F. Frézard, E. N. D. S. Júnior, Eur. J. Med. Chem. 63 (2013) 523-530. doi.org/10.1016/j.ejmech.2013.02.038.

D. K. Dalvie, A. S. Kalgutkar, S. C. Khojasteh-Bakht, R. S. Obach, J. P. O. Donnell, Chem. Res. Toxicol. 15 (2002) 269–299. doi: 10.1021/tx015574b.

W. S. Horne, M. K. Yadav, C. D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 126 (2004) 15366 –15367. doi:10.1021/ja0450408.

Y. Bourne, H. C. Kolb, Z. Radi, K. B. Sharpless, P. Taylor, P. Marchot, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1449-1454. doi: 10.1073/pnas.0308206100.

W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radi, P. R. Carlier, P. Taylor, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 114 (2002) 1095-1099. doi:10.1002/1521-3757(20020315)114:6<1095::AID-ANGE1095>3.0.CO;2-3.

N. G. Aher, V. S. Pore, N. N. Mishra, A. Kumar, P. K. Shukla, A. Sharma, M. K. Bhat Bioorg. Med. Chem. Let. 19 (2009) 759–763. doi.org/10.1016/j.bmcl.2008.12.026.

P. A. Wayne, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically CLSI document M07–A8, 2008. Clinical and Laboratory Standards Institute, (2008).

P. A. Wayne, Method for broth dilution antifungal susceptibility testing of yeasts, approved standard. CLSI document M27–A3. Clinical and Laboratory Standards Institute, (2008).

Published

07-05-2019

How to Cite

Rachakonda, S., F. Naaz, I. Ali, P. K. R. S., V. B. R. Mandava, and S. Syed. “Synthesis and anti–microbial Activity of 1,2,3–triazole Tethered Nitroguiacol Ethers”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 5, May 2019, pp. 329-34, doi:10.22159/ajpcr.2019.v12i5.29603.

Issue

Section

Original Article(s)