A REVIEW OF BOTANY, THERAPEUTIC VALUE, PHYTOCHEMISTRY, AND PHARMACOLOGY OF CUSSONIA PANICULATA

ETHNOPHARMACOLOGY OF CUSSONIA PANICULATA

Authors

  • ALFRED MAROYI Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i9.34434

Keywords:

Araliaceae, Cussonia paniculata, Ethnopharmacology, Herbal medicine, Indigenous pharmacopeia

Abstract

Cussonia paniculata is a small tree widely used as herbal medicine throughout its distributional range in southern Africa. This study is aimed at providing a critical review of the botany, biological activities, phytochemistry, and medicinal uses of C. paniculata. Documented information on the botany, biological activities, medicinal uses, and phytochemistry of C. paniculata was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, PubMed, and Web of Science. Additional information on the botany, biological activities, phytochemistry, and medicinal uses of C. paniculata was gathered from pre-electronic sources such as book chapters, books, journal articles, and scientific publications sourced from the University library. This study showed that the bark, fruits, leaves, roots, and stems of C. paniculata are used as emetic, immune booster, and herbal medicine for dysmenorrhea, intestinal parasites and worms, mental problems, boils, shingles and skin diseases, indigestion and stomach complaints, sores, and wounds. Phytochemical compounds identified from the leaves of C. paniculata include acetylated triterpene glycosides, unacetylated triterpene glycosides, flavonoid, steroidal saponin, and triterpenoid saponins. Pharmacological research revealed that C. paniculata extracts have analgesic, antibacterial, anticancer, anti-inflammatory, antiplasmodial, antiprotozoan, Aβ42 protein reduction, and cytotoxicity activities. Future research should focus on evaluating the phytochemical, pharmacological, and toxicological properties of C. paniculata crude extracts as well as compounds isolated from the species.

Downloads

Download data is not yet available.

References

Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93.

Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18.

Yıldırım A, Erener G. The possibilities using of ginseng (Panax spp.) in poultry nutrition. Hasad J Anim Sci 2010;26:56-9.

Leung KW, Wong AS. Ginseng and male reproductive function. Spermatogenesis 2013;3:e26391.

Yıldırım A, Şekeroğlu A, Eleroğlu H, Şen MI, Duman M. Effects of Korean ginseng (Panax ginseng C.A. Meyer) root extract on egg production performance and egg quality of laying hens. S Afr J Anim Sci 2013;43:194-207.

Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, et al. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 2016;6:39045.

Li TSC, Mazza G, Cottrell AC, Gao L. Ginsenosides in roots and leaves of American ginseng. J Agr Food Chem 1996;44:717-20.

Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan-Zdravkovic U, Xu Z, et al. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with Type 2 diabetes mellitus. Arch Intern Med 2000;160:1009-13.

Vuksan V, Sievenpiper JL, Wong J, Xu Z, Beljan-Zdravkovic U, Arnason JT, et al. American ginseng (Panax quinquefolius L.) attenuates postprandial glycemia in a time-dependent but not dose-dependent manner in healthy individuals. Am J Clin Nutr 2001;73:753-8.

Stavro PM, Woo M, Heim TF, Leiter LA, Vuksan V. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 2005;46:406-11.

Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, et al. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl) 2010;212:345-56.

Lui EM, Azike CG, Guerrero-Analco JA, Romeh AA, Pei H, Kaldas SJ, et al. Bioactive polysaccharides of American ginseng Panax quinquefolius L. in modulation of immune function: Phytochemical and pharmacological characterization. In: Karunaratne DN, editor. The Complex World of Polysaccharides. London: IntechOpen; 2012. p. 513-34.

Jiang M, Murias JM, Chrones T, Sims SM, Lui E, Noble EG, et al. American ginseng acutely regulates contractile function of rat heart. Front Pharmacol 2014;5:43.

Erdle SC, Chan ES, Yang H, Vallance BA, Mill C, Wong T, et al. First-reported pediatric cases of American ginseng anaphylaxis and allergy. Allergy Asthma Clin Immunol 2018;14:79.

Lui JH, Staba EJ. The ginsenosides of various ginseng plants and selected products. J Nat Prod 1980;43:340-6.

Radad K, Gille G, Irausch WD. Use of ginseng in medicine: Perspectives on CNS disorders. Iran J Pharmacol Ther 2004;3:30-40.

Chan HH, Hwang TL, Reddy MV, Li DT, Qian K, Bastow KF, et al. Bioactive constituents from the roots of Panax japonicus var. Major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. J Nat Prod 2011;74:796-802.

Lee OR, Han JH, Kim Y. Agrobacterium-mediated transformation of mature ginseng embryos. Bio-protocol 2014;4:e1362.

Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, et al. RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Front Plant Sci 2016;7:481.

Agarwal H, Gayathri M. Biological synthesis of nanoparticles from medicinal plants and its uses in inhibiting biofilm formation. Asian J Pharm Clin Res 2017;10:64-8.

Manzanilla V, Kool A, Nguyen Nhat L, Nong Van H, Le Thi Thu H, de Boer HJ, et al. Phylogenomics and barcoding of Panax: Toward the identification of ginseng species. BMC Evol Biol 2018;18:44.

Pennisi BV, Oetting RD, Stegelin FE, Thomas PA, Woodward JL. Commercial production of English ivy (Hedera helix L.). Athens Bulletin 1206. Georgia: University of Georgia; 2009.

Saiah H, Allem R, El Kebir FZ. Antioxidant and antibacterial activities of six Algerian medicinal plants. Int J Pharm Pharm Sci 2016;8:367-74.

Small E. Ivy (Hedera species): Virtues and vices of the world’s most popular ornamental vine. Biodiversity 2019;20:62-74.

Hofmann D, Hecker M, Völp A. Efficacy of dry extract of ivy leaves in children with bronchial asthma-a review of randomized controlled trials. Phytomedicine 2003;10:213-20.

Bolbot Y, Prokhorov E, Mokia S, Yurtseva A. Comparing the efficacy and safety of high concentrate (5-7.5:1) ivy leaves extract and acetylcysteine for treatment of children with acute bronchitis. Drugs Ukraine 2004;11:1-4.

Lutsenko Y, Bylka W, Matławska I, Darmohray R. Hedera helix as a medicinal plant. Herba Pol 2010;56:83-96.

Holzinger F, Chenot JF. Systematic review of clinical trials assessing the effectiveness of ivy leaf (Hedera helix) for acute upper respiratory tract infections. Evid Based Complement Alternat Med 2011;2011:382789.

Rai A. The antiinflammatory and antiarthritic properties of ethanol extract of Hedera helix. Indian J Pharm Sci 2013;75:99-102.

Rehman SU, Kim IS, Choi MS, Kim SH, Zhang Y, Yoo HH, et al. Time-dependent inhibition of CYP2C8 and CYP2C19 by Hedera helix extracts, a traditional respiratory herbal medicine. Molecules 2017;22:e1241.

Al-Snafi AE. Pharmacological and therapeutic activities of Hedera helix: A review. IOSR J Pharm 2018;8:41-53.

Yu M, Liu J, Li L, Xu H, Xing Y, Zhao Y, et al. Pharmacokinetic parameters of three active ingredients hederacoside C, hederacoside D, and Θ-hederin in Hedera helix in rats. J Sep Sci 2016;39:3292-301.

Elias R, De Méo M, Vidal-Ollivier E, Laget M, Balansard G, Dumenil G, et al. Antimutagenic activity of some saponins isolated from Calendula officinalis L. C. arvensis L. And Hedera helix L. Mutagenesis 1990;5:327-31.

Trute A, Gross J, Mutschler E, Nahrstedt A. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix. Planta Med 1997;63:125-9.

Villani P, Orsiere T, Sari-Minodier I, Bouvenot G, Botta A. In vitro study of antimutagenic activity of alpha hederin. Ann Biol Clin (Paris) 2001;59:285-9.

Barthomeuf C, Debiton E, Mshvildadze V, Kemertelidze E, Balansard G. In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med 2002;68:672-5.

Süleyman H, Mshvildadze V, Gepdiremen A, Elias R. Acute and chronic antiinflammatory profile of the ivy plant, Hedera helix, in rats. Phytomedicine 2003;10:370-4.

Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. Antioxidant activity of saponins isolated from ivy: Alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Med 2004;70:561-3.

Pop CE, Pârvu M, Arsene AL, Pârvu AE, Vodnar DC, Tarcea M, et al. Investigation of antioxidant and antimicrobial potential of some extracts from Hedera helix L. Farmacia 2017;65:624-9.

Reyneke WF. A new species of Cussonia (Araliaceae) from the Transvaal. S Afr J Bot 1984;3:368-74.

Reyneke WF, Kok PD. Two varieties of Cussonia paniculata Eckl. and Zeyh. (Araliaceae). S Afr J Bot 1987;53:317-22.

Tetyana P, Van Staden J. Micropropagation of Cussonia paniculata: A medicinal plant with horticultural potential. S Afr J Bot 2001;68:51-4.

Retief E, Meyer NL. Plants of the Free State Inventory and Identification Guide. Pretoria: Strelitzia 38, South African National Botanical Institute; 2017.

De Villiers BJ, Plunkett GM, Tilney PM, Van Wyk BE. A phylogenetic study of the genus Cussonia (Araliaceae) based on morphological, anatomical and molecular data. S Afr J Bot 2009;75:398.

De Villiers BJ, Tilney PM, Van Wyk BE. The taxonomic significance of leaf anatomical characters in Cussonia and related genera (Araliaceae). Bot J Linnean Soc 2010;164:246-63.

De Villiers BJ, Oskolski AA, Tilney PM, Van Wyk BE. Wood anatomy of Cussonia and Seemannaralia (Araliaceae) with systematic and ecological implications. IAWA J 2012;33:163-86.

Palmer E, Pitman P. Trees for Southern Africa Covering all known Indigenous Species in Republic of South Africa, South West Africa, Botswana, Lesotho and Swaziland. Cape Town: A.A. Balkema; 1972.

Barkhuizen BP. The Cycad Garden of Unisa. Pretoria: University of South Africa; 1975.

Oliver IB. Cultivation of the mountain cabbage tree: Cussonia paniculata Eckl. and Zeyh. var. sinuate Reyneke. Veld Fl 1987;73:135-6.

Walker CC, Levers M. Cussonia paniculata: The mountain cabbage tree. Br Cactus Succ J 1988;98-100.

Joffe P. The Gardener’s Guide to South African Plants. Cape Town: Delos; 1993.

Tetyana P. Medicinal Properties and Micropropagation of Cussonia species. MSc Dissertation. Pietermaritzburg: University of Natal; 2000.

Ogden S, Ogden LS. Plant-Driven Design: Creating Gardens that Honor Plants, Place, and Spirit. London: Timber Press; 2008.

Moyo M, Bairu MW, Amoo SO, Van Staden J. Plant biotechnology in South Africa: Micropropagation research endeavours, prospects and challenges. S Afr J Bot 2011;77:996-1011.

Richard S. The New Ornamental Garden. Collingwood: Csiro Publishing Gardening Guides; 2011.

Davoren E. Plant Diversity Patterns of Domestic Gardens in Five Settlements of South Africa. PhD Thesis. Potchefstroom: North-West University; 2017.

Long C. Swaziland’s Flora: SiSwati Names and Uses; 2005. Swaziland National Trust Commission, Mbambane. Available from: http://www.sntc.org.sz/index.asp. [Last accessed on 2017 May 20].

Van Wyk BE, Gericke N. People’s Plants: A Guide to Useful Plants of Southern Africa. Pretoria: Briza Publications; 2007.

Welcome AK, Van Wyk BE. An inventory and analysis of the food plants of Southern Africa. S Afr J Bot 2019;122:136-79.

Makunga NP, Philander LE, Smith M. Current perspectives on an emerging formal natural products sector in South Africa. J Ethnopharmacol 2008;119:365-75.

Dovie DB, Witkowski ET, Shackleton CM. Knowledge of plant resource use based on location, gender and generation. Appl Geogr 2008;28:311-22.

Stafleu FA, Cowan RS. Taxonomic Literature. Utrechst: Scheltema and Holkema; 1976.

Gavhi P, Harris S, Reynolds Y. Cussonia paniculata Eckl and Zeyh; 2002. Available from: http://www.pza.sanbi.org/cussonia-paniculata. [Last accessed on 2017 May 20].

Germishuizen G, Meyer NL. Plants of Southern Africa: An Annotated Checklist. Pretoria: Strelitzia 14, National Botanical Institute; 2003.

Cannon JF. Araliaceae. In: Launert E, editor. Flora Zambesiaca. Vol. 4. London: Flora zambesiaca Managing Committee; 1978. p. 621-32.

Van Wyk B, Van Wyk P. Field Guide to Trees of Southern Africa. Cape Town: Struik; 1997.

Palgrave MC. Keith Coates Palgrave Trees of Southern Africa. Cape Town: Struik Publishers; 2002.

Manning JC, Goldblatt P. Plants of the Greater Cape Floristic Region 1: The Core Cape Flora. Cape Town: Strelitzia 29, South African National Biodiversity Institute; 2012.

Moteetee A, Seleteng Kose L. Medicinal plants used in Lesotho for treatment of reproductive and post reproductive problems. J Ethnopharmacol 2016;194:827-49.

Mugomeri E, Chatanga P, Raditladi T, Makara M, Tarirai C. Ethnobotanical study and conservation status of local medicinal plants: Towards a repository and monograph of herbal medicines in Lesotho. Afr J Tradit Complement Altern Med 2016;13:143-56.

Guillarmod AJ. Flora of Lesotho. Lehre: Cramer; 1971.

Maliehe EB. Medicinal Plants and Herbs of Lesotho. Maseru: Mafeteng Development Project; 1997.

Moteetee A, Van Wyk BE. The medical ethnobotany of Lesotho: A review. Bothalia 2011;41:209-28.

Seleteng Kose L, Moteetee A, Van Vuuren S. Ethnobotanical survey of medicinal plants used in the Maseru district of Lesotho. J Ethnopharmacol 2015;170:184-200.

Tetyana P, Van Staden J. Micropropagation of Cussonia paniculata: A medicinal plant with horticultural potentials. S Afr J Bot 2001;67:367-70,

Thakur A, Chun YS, October N, Yang HO, Maharaj V. Potential of South African medicinal plants targeting the reduction of aβ42 protein as a treatment of Alzheimer’s disease. J Ethnopharmacol 2019;231:363-73.

Mugomeri E, Chatanga P, Chakane N. Medicinal herbs used by HIV-positive people in Lesotho. Afr J Tradit Complement Altern Med 2016;13:123-31.

Davids D. Materiamedica and Care: A Study of the Uses of Medicinal Herbs and Remedies as a form of Treatment and Negotiating Social Relationships in Cape Town and Surroundings. MSc Dissertation. Cape Town: University of the Western Cape; 2012.

Davids D, Blouws T, Aboyade O, Gibson D, De Jong JT, Klooster CV, et al. Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections. J Ethnobiol Ethnomed 2014;10:77.

Gail H, Tarryn B, Oluwaseyi A, Denver D, Oluchi M, Charlotte VK, et al. An ethnobotanical survey of medicinal plants used by traditional health practitioners to manage HIV and its related opportunistic infections in Mpoza, Eastern Cape Province, South Africa. J Ethnopharmacol 2015;171:109-15.

Maroyi A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J Ethnobiol Ethnomed 2017;13:43.

Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh: E and S Livingstone; 1962.

Cock IE, Selesho MI, Van Vuuren SF. A review of the traditional use of Southern African medicinal plants for the treatment of selected parasite infections affecting humans. J Ethnopharmacol 2018;220:250-64.

Schmidt E, Lotter M, McCleland W. Trees and Shrubs of Mpumalanga and Kruger National Park. Johannesburg: Jacana Media; 2002.

Afolayan AJ, Adebola PO. In vitro propagation: A biotechnological tool capable of solving the problem of medicinal plants decimation in South Africa. Afr J Biotech 2004;3:683-7.

Pillay P, Maharaj VJ, Smith PJ. Investigating South African plants as a source of new antimalarial drugs. J Ethnopharmacol 2008;119:438-54.

Sobiecki JF. A preliminary inventory of plants used for psychoactive purposes in southern African healing traditions. Trans Royal Soc S Afr 2002;57:1-24.

Masondo NA, Stafford GI, Aremu AO, Makunga NP. Acetylcholinesterase inhibitors from Southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S Afr J Bot 2019;120:39-64.

Alharbi R. Medicinal Properties of the Araliaceae, with Emphasis on Chemicals Affecting Nerve Cells. Masters Dissertation. Charleston: Eastern Illinois University; 2019.

Komoreng L, Thekisoe O, Lehasa S, Tiwani T, Mzizi N, Mokoena N, et al. An ethnobotanical survey of traditional medicinal plants used against lymphatic filariasis in South Africa. S Afr J Bot 2017;111:12-6.

Semenya SS, Potgieter MJ, Tshisikhawe MP. Use, conservation and present availability status of ethnomedicinal plants of Matebele-village in the Limpopo Province, South Africa. Afr J Biotechnol 2013;12:2392-405.

Moteetee A, Seleteng-Kose L. A review of medicinal plants used by the Basotho for treatment of skin disorders: Their phytochemical, antimicrobial, and anti-inflammatory potential. Afr J Tradit Complement Altern Med 2017;14:121-37.

Dovgii II, Grishkovets VI, Kachala VV, Shashkov AS. Triterpene glycosides from Cussonia paniculata: Isolation and structure determination of glycosides A, B1, B2, C,D, G2, HI and H2 from leaves of Cussonia paniculata. Chem Nat Comp 2005;41:200-4.

Grishkovets VI, Dovgii II, Kachala VV, Shashkov AS. Triterpene glycosides from Cussonia paniculata. II. Acetylated glycosides from leaves. Chem Nat Comp 2005;41:436-41.

Adedapo AA, Sofidiya MO, Maphosa V, Moyo B, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem bark. Rec Nat Prod 2008;2:46-53.

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016;5:e47.

Careaga VP, Bueno C, Muniain C, Alché L, Maier MS. Antiproliferative, cytotoxic and hemolytic activities of a triterpene glycoside from Psolus patagonicus and its desulfated analog. Chemotherapy 2009;55:60-8.

Bahrami Y, Franco CM. Acetylated triterpene glycosides and their biological activity from Holothuroidea reported in the past six decades. Mar Drugs 2016;14:e147.

Güçlü-Ustündağ O, Mazza G. Saponins: Properties, applications and processing. Crit Rev Food Sci Nutr 2007;47:231-58.

Thakur M, Melzig MF, Fuchs H, Weng A. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Bot Targets Ther 2011;1:19-29.

Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014;49:439-62.

Kregiel D, Berlowska J, Witonska I, Antolak H, Proestos C, Babic M, et al. Saponin-based, biological-active surfactants from plants. In: Najjar R. Application and Characterization of Surfactants. London: IntechOpen; 2017. p. 183-205.

Tian LW, Zhang Z, Long HL, Zhang YJ. Steroidal saponins from the genus Smilax and their biological activities. Nat Prod Bioprospect 2017;7:283-98.

De Villiers BJ, Van Vuuren SF, Van Zyl RL, Van Wyk BE. Antimicrobial and antimalarial activity of Cussonia species (Araliaceae). J Ethnopharmacol 2010;129:189-96.

Fouché G, Khorombi E, Kolesnikova N, Maharaj VJ, NthambeleniR, Van der Merwe M. Investigation of South African plants for anticancer properties. Pharmacologyonline 2006;3:494-500.

Fouche G, Cragg GM, Pillay P, Kolesnikova N, Maharaj VJ, Senabe J, et al. In vitro anticancer screening of South African plants. J Ethnopharmacol 2008;119:455-61.

Published

07-09-2019

How to Cite

ALFRED MAROYI. “A REVIEW OF BOTANY, THERAPEUTIC VALUE, PHYTOCHEMISTRY, AND PHARMACOLOGY OF CUSSONIA PANICULATA: ETHNOPHARMACOLOGY OF CUSSONIA PANICULATA”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 9, Sept. 2019, pp. 1-6, doi:10.22159/ajpcr.2019.v12i9.34434.

Issue

Section

Review Article(s)