NOVEL NANOPARTICULATE SYSTEMS FOR IDIOPATHIC PULMONARY FIBROSIS: A REVIEW

Authors

  • KIRAN R DUDHAT Department of Pharmaceutics, Gujarat Technological University, Chandkheda, Gujarat, India.
  • HARSHA V PATEL Department of Pharmaceutics, Gujarat Technological University, Chandkheda, Gujarat, India.

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i11.39035

Keywords:

Idiopathic pulmonary fibrosis, Nanoparticulate formulations, Nanoparticles route of administration, Aerodynamic properties

Abstract

Idiopathic pulmonary fibrosis (IPF) is the model of a substantial and heterogeneous gathering of pneumonic issues, mostly constant and dynamic, normally known as interstitial lung disease. In the course of the most recent couple of decades, IPF has been progressively perceived as a noteworthy neglected therapeutic need in respiratory pharmaceutical and has turned into the focal point of exceptional research action. This is because of the ways that IPF frequency is expanding around the world, with rates (and sadly forecast) that are fundamentally the same as those of numerous types of growth. Clinical research on IPF has been gigantically progressing, coming full circle in the current revelation of two sheltered and compelling medications, now at long last made accessible to patients. Ordinary treatment for lung disease is related to the absence of specificity and access to the typical cells bringing about cytotoxicity, lessened cell take-up, tranquilize obstruction, and quick medication freedom from the body. The rise of nanotechnology has reformed the treatment of lung diseases like IPF. The focal point of nanotechnology is to target abnormal alveolar epithelial cells (AECs) with enhanced bioavailability and diminished poisonous quality. Nanoparticulates have the potential for IPF treatment by increasing particular access to the abnormal AECs because of surface modifiability and littler size. This audit article additionally features the attributes, ongoing advances in the planning of NPs, and helpful results.

Downloads

Download data is not yet available.

References

Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Resp Med 2017;131:49-57.

Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: A systematic review. Eur Res J 2015;46:795-806.

Soo E, Adamali H, Edey A. Idiopathic pulmonary fibrosis: Current and future directions. Clin Radiol 2017;72:343-55.

Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Eng J Med 2001;345:517-25.

Kamp DW. Idiopathic pulmonary fibrosis: The inflammation hypothesis revisited. Chest 2003;124:1187-90.

Kropski JA, Pritchett JM, Zoz DF, Crossno PF, Markin C, Garnett ET, et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Res Crit Care Med 2015;191:417-26.

Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol 2013;5:483.

Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Am Thoracic Soc 2006;3:293-8.

Iwai K, Mori T, Yamada N, Yamaguchi M, Hosoda Y. Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. Am J Res Crit Care Med 1994;150:670-5.

Kaunisto J, Salomaa ER, Hodgson U, Kaarteenaho R, Kankaanranta H, Koli K, et al. Demographics and survival of patients with idiopathic pulmonary fibrosis in the FinnishIPF registry. ERJ Open Res 2019;5:00170.

Rudd RM, Prescott RJ, Chalmers J, Johnston ID. British thoracic society study on cryptogenic fibrosing alveolitis: Response to treatment and survival. Thorax 2007;62:62-6.

Panos RJ, Mortenson RL, Niccoli SA, King TE Jr. Clinical deterioration in patients with idiopathic pulmonary fibrosis: Causes and assessment. Am J Med 1990;88:396-404.

Gottlieb AJ, Spiera H, Teirstein AS, Siltzbach LE. Serologic factors in idiopathic diffuse interstitial pulmonary fibrosis. Am J Med 1965;39:405-10.

Du Bois R, Wells A. Cryptogenic fibrosing alveolitis/idiopathic pulmonary fibrosis. Eur Res J 2001;18:43s-55.

du Bois RM. An earlier and more confident diagnosis of idiopathic pulmonary fibrosis. Eur Resp Rev 2012;21:141-6.

Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Res Crit Care Med 2011;183:788-824.

Prasad R, Gupta N, Singh A, Gupta P. Diagnosis of idiopathic pulmonary fibrosis: Current issues. Intractable Rare Dis Res 2015;4:65-9.

Cottin V, Cadranel J, Crestani B, Dalphin JC, Delaval P, Israel-Biet D, et al. Management of idiopathic pulmonary fibrosis in France: A survey of 1244 pulmonologists. Res Med 2014;108:195-202.

Valeyre D. Towards a better diagnosis of idiopathic pulmonary fibrosis. Eur Respir Rev 2011;20:108-13.

Richeldi L, Du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Eng J Med 2014;370:2071-82.

Canestaro WJ, Forrester SH, Raghu G, Ho L, Devine BE. Drug treatment of idiopathic pulmonary fibrosis: Systematic review and network meta-analysis. Chest 2016;149:756-66.

King TE Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A Phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Eng J Med 2014;370:2083-92.

Hayton C, Chaudhuri N. Current treatments in the management of idiopathic pulmonary fibrosis: Pirfenidone and nintedanib. Clin Med Insights Ther 2017;9:126.

Cottin V. The role of pirfenidone in the treatment of idiopathic pulmonary fibrosis. Respir Res 2013;14:S5.

Cottin V, Maher T. Long-term clinical and real-world experience with pirfenidone in the treatment of idiopathic pulmonary fibrosis. Eur Respir Rev 2015;24:58-64.

Azuma A. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Adv Res Dis 2012;6:107-14.

Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Eng J Med 2012;366:1968-77.

Wells A, Behr J, Costabel U, Cottin V, Poletti V. Triple therapy in idiopathic pulmonary fibrosis: An alarming press release. Eur Respir Soc 2012;39:805-6.

Douglas WW, Ryu JH, Schroeder DR. Idiopathic pulmonary fibrosis: Impact of oxygen and colchicine, prednisone, or no therapy on survival. Am J Respir Crit Care Med 2000;161:1172-8.

Weg JG, Haas CF. Long-term oxygen therapy for COPD: Improving longevity and quality of life in hypoxemic patients. Postgrad Med 1998;103:143-55.

Mejía M, Carrillo G, Rojas-Serrano J, Estrada A, Suárez T, Alonso D, et al. Idiopathic pulmonary fibrosis and emphysema: Decreased survival associated with severe pulmonary arterial hypertension. Chest 2009;136:10-5.

Kistler KD, Nalysnyk L, Rotella P, Esser D. Lung transplantation in idiopathic pulmonary fibrosis: A systematic review of the literature. BMC Pulm Med 2014;14:139.

Mason DP, Brizzio ME, Alster JM, McNeill AM, Murthy SC, Budev MM, et al. Lung transplantation for idiopathic pulmonary fibrosis. Ann Thoracic Surg 2007;84:1121-8.

Raghu G, Richeldi L. Current approaches to the management of idiopathic pulmonary fibrosis. Respir Med 2017;129:24-30.

El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010;3:135-40.

Pandey N, Dhiman S, Srivastava T, Majumder S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 2016;254:221-30.

Kawashima Y. Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 2001;47:1-136.

Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015;5:81-9.

Meng H, Xu Y. Pirfenidone-loaded liposomes for lung targeting: Preparation and in vitro/in vivo evaluation. Drug Des Dev Ther 2015;9:3369.

Togami K, Miyao A, Miyakoshi K, Kanehira Y, Tada H, Chono S. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis. Biol Pharm Bull 2015;38:270-6.

Maiolino S, Russo A, Pagliara V, Conte C, Ungaro F, Russo G, et al. Biodegradable nanoparticles sequentially decorated with polyethyleneimine and hyaluronan for the targeted delivery of docetaxel to airway cancer cells. J Nanobiotechnol 2015;13:29.

Jone A. Liposomes: A short review. J Pharm Sci Res 2013;5:181. pulmonary fibrosis. Eur Resp Rev 2012;21:141-6.

Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Res Crit Care Med 2011;183:788-824.

Prasad R, Gupta N, Singh A, Gupta P. Diagnosis of idiopathic pulmonary fibrosis: Current issues. Intractable Rare Dis Res 2015;4:65-9.

Cottin V, Cadranel J, Crestani B, Dalphin JC, Delaval P, Israel-Biet D, et al. Management of idiopathic pulmonary fibrosis in France: A survey of 1244 pulmonologists. Res Med 2014;108:195-202.

Valeyre D. Towards a better diagnosis of idiopathic pulmonary fibrosis. Eur Respir Rev 2011;20:108-13.

Richeldi L, Du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Eng J Med 2014;370:2071-82.

Canestaro WJ, Forrester SH, Raghu G, Ho L, Devine BE. Drug treatment of idiopathic pulmonary fibrosis: Systematic review and network meta-analysis. Chest 2016;149:756-66.

King TE Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A Phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Eng J Med 2014;370:2083-92.

Hayton C, Chaudhuri N. Current treatments in the management of idiopathic pulmonary fibrosis: Pirfenidone and nintedanib. Clin Med Insights Ther 2017;9:126.

Cottin V. The role of pirfenidone in the treatment of idiopathic pulmonary fibrosis. Respir Res 2013;14:S5.

Cottin V, Maher T. Long-term clinical and real-world experience with pirfenidone in the treatment of idiopathic pulmonary fibrosis. Eur Respir Rev 2015;24:58-64.

Azuma A. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Adv Res Dis 2012;6:107-14.

Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Eng J Med 2012;366:1968-77.

Wells A, Behr J, Costabel U, Cottin V, Poletti V. Triple therapy in idiopathic pulmonary fibrosis: An alarming press release. Eur Respir Soc 2012;39:805-6.

Douglas WW, Ryu JH, Schroeder DR. Idiopathic pulmonary fibrosis: Impact of oxygen and colchicine, prednisone, or no therapy on survival. Am J Respir Crit Care Med 2000;161:1172-8.

Weg JG, Haas CF. Long-term oxygen therapy for COPD: Improving longevity and quality of life in hypoxemic patients. Postgrad Med 1998;103:143-55.

Mejía M, Carrillo G, Rojas-Serrano J, Estrada A, Suárez T, Alonso D, et al. Idiopathic pulmonary fibrosis and emphysema: Decreased survival associated with severe pulmonary arterial hypertension. Chest 2009;136:10-5.

Kistler KD, Nalysnyk L, Rotella P, Esser D. Lung transplantation in idiopathic pulmonary fibrosis: A systematic review of the literature. BMC Pulm Med 2014;14:139.

Mason DP, Brizzio ME, Alster JM, McNeill AM, Murthy SC, Budev MM, et al. Lung transplantation for idiopathic pulmonary fibrosis. Ann Thoracic Surg 2007;84:1121-8.

Raghu G, Richeldi L. Current approaches to the management of idiopathic pulmonary fibrosis. Respir Med 2017;129:24-30.

El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010;3:135-40.

Pandey N, Dhiman S, Srivastava T, Majumder S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 2016;254:221-30.

Kawashima Y. Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 2001;47:1-136.

Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015;5:81-9.

Meng H, Xu Y. Pirfenidone-loaded liposomes for lung targeting: Preparation and in vitro/in vivo evaluation. Drug Des Dev Ther 2015;9:3369.

Togami K, Miyao A, Miyakoshi K, Kanehira Y, Tada H, Chono S. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis. Biol Pharm Bull 2015;38:270-6.

Maiolino S, Russo A, Pagliara V, Conte C, Ungaro F, Russo G, et al. Biodegradable nanoparticles sequentially decorated with polyethyleneimine and hyaluronan for the targeted delivery of docetaxel to airway cancer cells. J Nanobiotechnol 2015;13:29.

Jone A. Liposomes: A short review. J Pharm Sci Res 2013;5:181.

Pierre MB, Costa ID. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 2011;303:607.

Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46.

Guo L, Fan L, Ren J, Pang Z, Ren Y, Li J, et al. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomedicine 2012;7:1449.

Kellaway IW, Farr SJ. Liposomes as drug delivery systems to the lung. Adv Drug Deliv Rev 1990;5:149-61.

Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014;103:29-52.

Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Reddy SC, Bhargav E. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2018;13:91-100.

Wang Q, Wu P, Ren W, Xin K, Yang Y, Xie C, et al. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Res Lett 2014;9:351.

Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med Princ Pract 2016;25:60-72.

Zhang L, Gu F, Chan J, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761-9.

Yhee JY, Im J, Nho RS. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 2016;5:82.

Schuster BS, Suk JS, Woodworth GF, Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 2013;34:3439-46.

Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014;39:268-307.

Mendes LP, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017;22:1401.

Bharatwaj B, Mohammad AK, Dimovski R, Cassio FL, Bazito RC, Conti D, et al. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 2015;12:826-38.

Jeong Y, Kim ST, Jiang Y, Duncan B, Kim CS, Saha K, et al. Nanoparticle-dendrimer hybrid nanocapsules for therapeutic delivery. Nanomedicine 2016;11:1571-8.

Inapagolla R, Guru BR, Kurtoglu Y, Gao X, Lieh-Lai M, Bassett DJ, et al. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010;399:140-7.

Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014;75:81-91.

Haque S, McLeod VM, Jones S, Fung S, Whittaker M, McIntosh M, et al. Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers. Eur J Pharm Biopharm 2017;119:408-18.

Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62.

Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 2010;16:561-73.

Swierczewska M, Lee S, Chen X. Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 2011;10:3-16.

Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther 2014;22:1075-83.

Capek I. DNA Engineered Noble Metal Nanoparticles: Fundamentals and State-of-the-art of Nanobiotechnology. United States: John Wiley & Sons; 2015.

Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, et al. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 2013;10:19.

Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, et al. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006;20:2393-5.

Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. Part Fibre Toxicol 2013;10:15.

Shrikhande SS, Jain DS, Athawale RB, Bajaj AN. Nanoparticulate drug delivery systems for treatment of hepatocellular carcinoma. Curr Cancer Ther Rev 2014;10:22-33.

Muralidharan P, Malapit M, Mallory E, Hayes D Jr., Mansour HM.Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 2015;11:1189-99.

Dehghan S, Kheiri MT, Tabatabaiean M, Darzi S, Tafaghodi M. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch Pharm Res 2013;36:981-92.

Kilic A, Capan Y, Vural I, Gursoy RN, Dalkara T, Cuine A, et al. Preparation and characterization of PLGA nanospheres for the targeted delivery of NR2B-specific antisense oligonucleotides to the NMDA receptors in the brain. J Microencapsul 2005;22:633-41.

Stella B, Arpicco S, Rocco F, Marsaud V, Renoir JM, Cattel L, et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm 2007;344:71-7.

Pitard B, Bello-Roufaï M, Lambert O, Richard P, Desigaux L, Fernandes S. et al. Negatively charged self-assembling DNA/ poloxamine nanospheres for in vivo gene transfer. Nucleic Acids Res 2004;32:e159.

Richard-Fiardo P, Cambien B, Pradelli E, Beilvert F, Pitard B, Schmid- Antomarchi H, et al. Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Ther 2011;18:761-72.

Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015;219:500-18.

Nishimoto K, Mimura A, Aoki M, Banura N. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles. Open J Med Imaging 2015;5:49.

Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, et al. Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv 2015;28:43-51.

Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 2013;11:1.

Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm 2014;86:7-22.

Nguyen KT, Zhao Y. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 2015;48:3016-25.

Sgorla D, Bunhak ÉJ, Cavalcanti OA, Fonte P, Sarmento B. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications. Expert Opin Drug Deliv 2016;13:1301-9.

Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur J Pharm Biopharm 2013;85:427-43.

Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding. Langmuir 2011;27:10556-61.

Zhang L, Feng Q, Wang J, Zhang S, Ding B, Wei Y, et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: Understanding flexibility-regulated cell-nanoparticle interaction. ACS Nano 2015;9:9912-21.

Zhang L, Zhang L. Lipid-polymer hybrid nanoparticles: Synthesis, characterization and applications. Nano Life 2010;1:163-73.

Ragelle H, Colombo S, Pourcelle V, Vanvarenberg K, Vandermeulen G, Bouzin C, et al. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly (ethylene imine) hybrid nanoparticles: A mechanistic insight. J Control Release 2015;211:1-9.

Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, et al. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One. 2013;8:e69643.

van Vlerken LE, Vyas TK, Amiji MM. Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007;24:1405-14.

Ungaro F, d’Angelo I, Coletta C, d’Emmanuele di Villa Bianca R, Sorrentino R, Perfetto B, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 2012;157:149-59.

Fahmi A, Appelhans D, Cheval N, Pietsch T, Bellmann C, Gindy N, et al. Hybrid nanoalloy: Nanofibers fabricated by self-assembling dendrimers mediate in situ CdSe quantum dots and their metallization with discrete gold nanoparticles. J Adv Mater 2011;23:3289-93.

Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014;183:18-26.

Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F,et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007;2:495.

Ali J, Ali M, Baboota S. Patents on nanoparticulate drug delivery systems-a review. Recent Pat Drug Deliv Formul 2008;2:83-9.

Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci 2014;15:5852-73.

Garbuzenko OB, Ivanova V, Kholodovych V, Reimer DC, Reuhl KR, Yurkow E, et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine 2017;13:1983-92.

Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 2008;60:863-75.

Savla R, Minko T. Nanotechnology approaches for inhalation treatment of fibrosis. J Drug Target 2013;21:914-25.

Jiang HL, Hong SH, Kim YK, Islam MA, Kim HJ, Choi YJ, et al. Aerosol delivery of spermine-based poly (amino ester)/Akt1 shRNA complexes for lung cancer gene therapy. Int J Pharm 2011;420:256-65.

Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 2010;392:1-19.

Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations. J Control Release 2012;157:383-90.

Grenha A, Remuñán-López C, Carvalho EL, Seijo B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm 2008;69:83-93.

Li YZ, Sun X, Gong T, Liu J, Zuo J, Zhang ZR. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res 2010;27:1977-86.

McDonald G. Topically Active Steroids for Use in Interstitial Pulmonary Fibrosis. United States: Google Patents; 2017.

Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of Vitamin A. AAPS PharmSciTech 2006;7:E63-9.

Silva AL, Santos RS, Xisto DG, Alonso SD, Morales MM, Rocco PR,et al. Nanoparticle-based therapy for respiratory diseases. An Acad Bras Cienc 2013;85:137-46.

Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008;101:4-21.

Boland S, Guadagnini R, Baeza-Squiban A, Hussain S, Marano F. Nanoparticles used in medical applications for the lung: Hopes for nanomedicine and fears for nanotoxicity. J Phys Conf Ser 2011;304:16-8.

Iyer R, Hsia CC, Nguyen KT. Nano-therapeutics for the lung: State-of-the-art and future perspectives. Curr Pharm Des 2015;21:5233-44.

Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemoth 2003;52:981-6.

Banerjee ER. Idiopathic lung fibrosis model for drug discovery. In: Perspectives in Translational Research in Life Sciences and Biomedicine. Berlin, Germany: Springer; 2016. p. 13-31.

Zahoor A, Sharma S, Khuller G. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005;26:298-303.

Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: Focus on neurological targets. Int J Nanomed 2013;8:951.

Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23.

Byrne JD, Baugh JA. The significance of nanoparticles in particle-induced pulmonary fibrosis. McGill J Med 2008;11:43.

Gradauer K, Barthelmes J, Vonach C, Almer G, Mangge H, Teubl B, et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release 2013;172:872-8.

Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond) 2008;3:703-17.

Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci 2015;10:481-9.

Published

07-11-2020

How to Cite

DUDHAT, K. R., and H. V PATEL. “NOVEL NANOPARTICULATE SYSTEMS FOR IDIOPATHIC PULMONARY FIBROSIS: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 11, Nov. 2020, pp. 3-11, doi:10.22159/ajpcr.2020.v13i11.39035.

Issue

Section

Review Article(s)