IDENTIFICATION AND DETECTION OF BIOFILM PRODUCING STAPHYLOCOCCUS AUREUS AND ITS ANTIBIOGRAM ACTIVITIES

Authors

  • SAPANA SHARMA Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • UPASHANA BHANDARI Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • YOGESH OLI Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • GANESH BHANDARI Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • SUNITA BISTA Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • GANGA GC Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
  • BASUDHA SHRESTHA Department of Microbiology, Kathmandu Model Hospital, Kathmandu, Nepal.
  • NETRA LAL BHANDARI Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.

DOI:

https://doi.org/10.22159/ajpcr.2021.v14i4.40728

Keywords:

Methicillin-resistant Staphylococcus aureus, Methicillin-sensitive Staphylococcus aureus, Biofilm, Kirby-Bauer disk diffusion, Tissue culture plate, Minimum inhibitory concentration

Abstract

Objectives: The main aim of this work is to determine the antibiogram profile of biofilm-producing Staphylococcus aureus from various clinical specimens of the patients.

Methods: Various bacterial cultures of non-repeated clinical specimens from a total of 3388 patients were determined using standard microbiological and biochemical methods.

Results: Out of 3388 only 604 (17.02%) displayed growth positive. A total of 65 (51.58%) S. aureus isolates were recovered, 25 (38.46%) were identified as methicillin-resistant S. aureus (MRSA) by Cefoxitin (30 μg) disk diffusion technique, of which majority were from pus/wound swab 22 (37.29%). The antibiogram of the isolates was analyzed by Kirby-Bauer disk diffusion technique analyzing Linezolid to be the most effective drug with susceptibility of 100% to both MRSA and methicillin-sensitive S. aureus, followed by vancomycin, tigecycline, and tetracycline. In vitro biofilm production by tissue culture plate (TCP) and Congo red agar method detected 52 (80%) and 25 (38.46%) as biofilm producers, respectively. TCP identified 2 (3.07%), 7 (10.76%), and 44 (67.69%) as strongly, moderately, and weakly adherent. About 30.7% of MRSA obtained were positive biofilm producers. The minimum inhibitory concentration value of Oxacillin for S. aureus by agar dilution method ranged from 0.025 μg/mL to 128 μg/mL.

Conclusion: This study shows that biofilm production was more in methicillin-resistant strains and displayed a high degree of resistance to almost all groups of antibiotics.

Downloads

Download data is not yet available.

References

Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: Mechanism and modulation. Sci Prog 2002;85:57-72.

Pozzi C, Waters EM, Rudkin JK, Lohan AM, Tong P, Loftus BJ, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulences in S. aureus device-associated infections. PLoS Pathog 2012;8:e1002626.

Thammanvongsa V, Kim HK, Missiakleas D, Scheewmd O. Staphylococcal manipulation of host immune responses. Nature Rev Microbiol 2015;13:529-43.

Mathur T, Singhal S, Khan S, Upadhay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian J Med Microbiol 2006;24:25-9.

Ziebhur W, Lobner I, Krimmer V, Hacker J. Methods to detect and analyze phenotypic variation in biofilm-forming staphylococci. Method Enzymol 2001;336:195-233.

Houston P, Rowe SE, Pozzi R, Water EM, Gara JP. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 2011;79:1153-65.

Altieri KT, Sanita PV, Machado AL, Giampaolo ET, Pavarina AC, Jorge JH, et al. Eradication of mature methicillin-resistant Staphylococcus aureus (MRSA) biofilm from acrylic surfaces. Braz Dent J 2013;24:487-91.

Hadler JL, Petit S, Mandour M, Cartter ML. Trend in invasive infection with methicillin-resistant Staphylococcus aureus, Connecticut, USA, 2001-2010. Emerg Infect Dis 2012;18:917-24.

Gould IM. The clinical significance of methicillin-resistant Staphylococcus aureus. J Hosp Infect 2005;61:272-82.

Ansari S, Nepal HP, Gautam R, Rayamajhi N, Shrestha S, Upadhyay G, et al. Threat of drug-resistant Staphylococcus aureus to health in Nepal. Biomed Cent Infect Dis 2014;14:157.

Wolcott RD, Ehrlich GD. Biofilm and chronic infections. J Am Med Assoc 2008;299:2682-4.

Enright MC. The evolution of a resistant pathogen-the case of MRSA. Curr Opin Pharmacol 2003;3:474-9.

Hidron Al, Kourbatova EV, Halvosa JS, Terrell BJ, McDougal LK, Tenover FC, et al. Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to Urban hospital: Emergence of community-associated MRSA nasal carriage. Clin Infect Dis 2005;41:159-66.

Collee JF, Fraser AG, Marmion BO, Simmons A. Staphylococcus: Cluster forming gram positive cocci. In: Mackie and McCartney Practical Medical Microbiology. 14th ed. United States: Churchill Livingstone; 2006.

Cheesebrough M. District Laboratory Practice in Tropical Countries Part 2. Cambridge, England: Cambridge University Press; 2006.

Clinical and Laboratory Standards Institute. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-fourth Supplement, CLSI Document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

Moghadam SO, Pourmad MR, Aminharati F. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J Infect Dev Countries 2014;8:1511-7.

Kwasny SM, Opperman JT. Static biofilm cultures of gram-positive pathogens grown in microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol 2010;50:13A.8.

Kshetry AO, Pant ND, Khatri S, Shrestha KL, Upadhaya SK, Poudel A, et al. Minimum inhibitory concentration of vancomycin to methicillin-resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrob Resist Infect Control 2016;5:27.

Iregbu KC, Uwaezuoke NS, Nwajiobi-Princewill IP, Eze SO, Medugu N, Shettima S, et al. A profile of wound infection in national hospital Abuja. Afr J Clin Exp Microbiol 2013;14:160-3.

Garcia-Granja PE, Lόpez J, Vilacosta I, Ortiz-Bautista C, Sevilla T, Olmos C, et al. Polymicrobial infective endocarditis: Clinical features and prognosis. Medicine 2015;94:1-6.

Pandey S, Raza S, Bhatta CP. Prevalence and antibiotic sensitivity pattern of methicillin-resistant Staphylococcus aureus in Kathmandu medical college-Teaching hospital. J Inst Med 2012;34:13-7.

Shahina Z, Chowdhury AH, Arifuzzaman MD. Prevalence of antimicrobial sensitivity and resistant pattern of a gram-positive cluster forming cocci in clinical samples. IOSR J Dent Med Sci 2014;13:53-7.

Bhandari G, Pokharel B, Oli Y, Katuwal A, Bhandari NL. Screening of methicillin-resistant Staphylococcus aureus (MRSA) from wounds in pediatric patients visiting tertiary care in hospital. Nepal J Biotechnol 2019;7:82-9.

Belbase A, Pant ND, Nepal K, Nepal B, Baidhya R, Lekhak B. Antibiotic resistance and biofilm production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Ann Clin Microbiol Antimicrob 2017;16:2-5.

Verma AK, Kapoor AK, Bhargava A. Antimicrobial susceptibility pattern of bacterial isolates from surgical wound infection in tertiary care hospital in Allahabad, India. Int J Med Update 2012;7:27-34.

Adhikari R, Pant ND, Neupane M, Bhattarai R, Bhatta S, Chaudhary R, et al. Detection of methicillin-resistant Staphylococcus aureus and determination of the minimum inhibitory concentration of vancomycin for Staphylococcus aureus isolated from pus/wound samples of the patients attending a tertiary care hospital in Kathmandu Nepal. Can J Infect Dis Med Microbiol 2017:1-6.

Tiwari HK, Das AK, Sapkota D, Sivarjan K, Pahwa VK. Methicillin-resistant Staphylococcus aureus prevalence and antibiogram in tertiary care hospital in Western Nepal. J Infect Dev Ctries 2009;3:681-4.

Goyal A, Diwakar MK, Bhosshan S, Goyal S, Agrawal A. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) isolates at a tertiary care hospital in Agra, North India-a systemic annual review. IOSR J Dent Med Sci 2013;11:80-4.

Ghellai L, Hassaine H, Klouche N, Khadir A, Aissaoui N, Nas F, et al. Detection of biofilm formation of a collection of fifty strains of Staphylococcus aureus isolated in Algeria at the university hospital of Telmcan. J Bacterio Rese 2014;6:1-6.

Mohamed A, Rajaa AM, Khalid Z, Fouad M, Naima R. Comparison of three methods for the detection of biofilm formation by clinical isolates of S. aureus isolated in Casablanca. Int J Sci Rese 2016;5:1156-9.

Hassan A, Usman J, Kaleen F, Omkar M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011;15:305-11.

Devaraj C, Sajjan GA. Comparison of three different methods for detection of biofilm in gram-positive cocci and gram-negative Bacilli isolated from clinical specimens. J Pharm Sci Rese 2015;7:952-5.

Grinholc M, Wegryn G, Kurlend J. Evaluation of biofilm production and prevalence of the icaD gene in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains isolated from patients with nosocomial infections and carrier. FEMS Immun Med Microbiol 2007;50:375-9.

Published

07-04-2021

How to Cite

SHARMA, S., U. BHANDARI, Y. OLI, G. BHANDARI, S. BISTA, G. GC, B. SHRESTHA, and N. L. BHANDARI. “IDENTIFICATION AND DETECTION OF BIOFILM PRODUCING STAPHYLOCOCCUS AUREUS AND ITS ANTIBIOGRAM ACTIVITIES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 4, Apr. 2021, pp. 150-6, doi:10.22159/ajpcr.2021.v14i4.40728.

Issue

Section

Original Article(s)

Most read articles by the same author(s)