A REVIEW OF MERELY POLYMERIC NANOPARTICLES IN RECENT DRUG DELIVERY SYSTEM
DOI:
https://doi.org/10.22159/ajpcr.2022.v15i4.43239Keywords:
Nanotechnology, Polymeric nanoparticles, Supercritical fluid technology, Nanomedicine, Drug efficacyAbstract
Synthetic, semi-synthetic, and natural polymers make up the colloidal formations of polymeric nanoparticles. Because of their large surface area and nanoscale size, nanoparticles have unique physical and chemical capabilities. Their distinct size, shape, and structure influence their optical characteristics, reactivity, durability, and other attributes. Supercritical fluids, in which the fluid retains a single-phase regardless of pressure, are environmentally beneficial. It is in a state of minor criticality. Because the precipitate is solvent-free, this method is environmentally friendly. Due to their qualities, they are good candidates for various commercial and marital uses, including catalysis, imaging, pharmaceutical applications, energy-based research, and ecological applications. This review provides a supercritical fluid technology-based polymeric nanoparticles overview of various forms uses, synthesis, properties, and forthcoming prospects.
Downloads
References
Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release 2002;78:15-24. doi: 10.1016/s0168-3659(01)00486-2, PMID 11772445
Mohanraj VJ, Chen Y. Nanoparticles a review. Trop J Pharm Res 2006;5:561-73. doi: 10.4314/tjpr.v5i1.14634
Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC- 12 cells induces dopamine depletion. Toxicol Sci 2006;92:456-63. doi: 10.1093/toxsci/kfl020, PMID 16714391
Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 2016;60:569-78. doi: 10.1016/j.msec.2015.11.067, PMID 26706565
Asai T, Tsuzuku T, Takahashi S, Okamoto A, Dewa T, Nango M, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014;444:599-604. doi: 10.1016/j.bbrc.2014.01.107, PMID 24486551
Kadam RS, Bourne DW, Kompella UB. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metab Dispos 2012;40:1380-8. doi: 10.1124/ dmd.112.044925, PMID 22498894
Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001;218:75-80. doi: 10.1016/s0378-5173(01)00614-7, PMID 11337151
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing Vitamin E TPGS. J Control Release 2003;86:33-48. doi: 10.1016/ s0168-3659(02)00320-6, PMID 12490371
Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005;2:369-81. doi: 10.2174/156720105774370159, PMID 16305440
Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25:1771-7. doi: 10.1016/j.biomaterials.2003.08.069, PMID 14738840
Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, et al. Pegylated polycyanoacrylate nanoparticles as tumor necrosis factor-alpha carriers. J Control Release 2001;71:287-96. doi: 10.1016/s0168-3659(01)00235- 8, PMID 11295221
Thote AJ, Gupta RB. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 2005;1:85-90. doi: 10.1016/j.nano.2004.12.001, PMID 17292062
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014;10:321-32. doi: 10.4161/hv.26796, PMID 24128651
Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 1996;13:1838-45. doi: 10.1023/a:1016085108889, PMID 8987081
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1- 18. doi: 10.1016/j.colsurfb.2009.09.001, PMID 19782542
Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: A comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 1998;43:879-86; discussion 886. doi: 10.1097/00006123- 199810000-00090, PMID 9766316
Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006;92:5-22. doi: 10.1093/toxsci/kfj130, PMID 16484287
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80- coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409-16. doi: 10.1023/a:1022604120952, PMID 12669961
Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 2003;52:981-6. doi: 10.1093/jac/dkg477, PMID 14613962
Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. J Control Release 2001;71:39-51. doi: 10.1016/s0168-3659(00)00358-8, PMID 11245907
Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co- poloxamine 908: In vitro characterisation and in vivo evaluation. J Control Release 2001;70:353-63. doi: 10.1016/s0168-3659(00)00367- 9, PMID 11182205
Müller RH, Wallis KH. Surface modification of IV injectable biodegradable nanoparticles with poloxamer polymer and poloxamine 908. Int J Pharm 1993;89:25-31. doi: 10.1016/0378- 5173(93)90304-X
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51. doi: 10.1016/s0169- 409x(02)00044-3, PMID 12204596
Olivier JC. Drug transport to brain with targeted nanoparticles. Neurorx 2005;2:108-19. doi: 10.1602/neurorx.2.1.108, PMID 15717062
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62. doi: 10.1016/j.bmc.2009.02.043, PMID 19299149
Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000;199:95-110. doi: 10.1016/s0378-5173(00)00375-6, PMID 10794931
Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004;93:1804-14. doi: 10.1002/jps.20094, PMID 15176068
Banerjee SS, Chen DH. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008;19:505104. doi: 10.1088/0957-4484/19/50/505104
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014;9:223-43. doi: 10.1016/j. nantod.2014.04.008, PMID 25132862
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014;2:904-8. doi: 10.3892/mco.2014.356, PMID 25279172
Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012;7:9. doi: 10.3892/mco.2014.356, PMID 25279172
Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007;8:1966-72. doi: 10.1021/bm070085x, PMID 17497921
Chen JP, Leu YL, Fang CL, Chen CH, Fang JY. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci 2011;100:655-66. doi: 10.1021/bm070085x, PMID 17497921
Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng L, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016;6:435-45. doi: 10.7150/thno.13896, PMID 26909117
Scott C, Wu D, Ho CC, Co CC. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick. J Am Chem Soc 2005;127:4160-1. doi: 10.1021/ja044532h, PMID 15783184
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 2017;6:201700433. doi: 10.1002/ adhm.201700433, PMID 28752598
Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, et al. Dextran-b-poly(L-histidine) copolymer nanoparticles for ph-responsive drug delivery to tumor cells. Int J Nanomed 2013;8:3197-207. doi: 10.2147/IJN.S49459, PMID 23986636
James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 2014;4:120-7. doi: 10.1016/j.apsb.2014.02.005, PMID 26579373
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015;3:955- 87. doi: 10.1039/c5bm00002e, PMID 26221933
Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacol 2012;2012:571394. doi: 10.5402/2012/571394
Li G, Guo L, Chang X, Yang M. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 2012;50:899-904. doi: 10.1016/j. ijbiomac.2012.02.013, PMID 22679630
Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, et al. α-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Applpoloxamine 908: In vitro characterisation and in vivo evaluation. J Control Release 2001;70:353-63. doi: 10.1016/s0168-3659(00)00367- 9, PMID 11182205
Müller RH, Wallis KH. Surface modification of IV injectable biodegradable nanoparticles with poloxamer polymer and poloxamine 908. Int J Pharm 1993;89:25-31. doi: 10.1016/0378- 5173(93)90304-X
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51. doi: 10.1016/s0169- 409x(02)00044-3, PMID 12204596
Olivier JC. Drug transport to brain with targeted nanoparticles. Neurorx 2005;2:108-19. doi: 10.1602/neurorx.2.1.108, PMID 15717062
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62. doi: 10.1016/j.bmc.2009.02.043, PMID 19299149
Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000;199:95-110. doi: 10.1016/s0378-5173(00)00375-6, PMID 10794931
Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004;93:1804-14. doi: 10.1002/jps.20094, PMID 15176068
Banerjee SS, Chen DH. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008;19:505104. doi: 10.1088/0957-4484/19/50/505104
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014;9:223-43. doi: 10.1016/j. nantod.2014.04.008, PMID 25132862
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014;2:904-8. doi: 10.3892/mco.2014.356, PMID 25279172
Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012;7:9. doi: 10.3892/mco.2014.356, PMID 25279172
Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007;8:1966-72. doi: 10.1021/bm070085x, PMID 17497921
Chen JP, Leu YL, Fang CL, Chen CH, Fang JY. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci 2011;100:655-66. doi: 10.1021/bm070085x, PMID 17497921
Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng L, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016;6:435-45. doi: 10.7150/thno.13896, PMID 26909117
Scott C, Wu D, Ho CC, Co CC. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick. J Am Chem Soc 2005;127:4160-1. doi: 10.1021/ja044532h, PMID 15783184
Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 2017;6:201700433. doi: 10.1002/ adhm.201700433, PMID 28752598
Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, et al. Dextran-b-poly(L-histidine) copolymer nanoparticles for ph-responsive drug delivery to tumor cells. Int J Nanomed 2013;8:3197-207. doi: 10.2147/IJN.S49459, PMID 23986636
James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 2014;4:120-7. doi: 10.1016/j.apsb.2014.02.005, PMID 26579373
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015;3:955- 87. doi: 10.1039/c5bm00002e, PMID 26221933
Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacol 2012;2012:571394. doi: 10.5402/2012/571394
Li G, Guo L, Chang X, Yang M. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 2012;50:899-904. doi: 10.1016/j. ijbiomac.2012.02.013, PMID 22679630
Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, et al. α-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS ApplMater Interfaces 2017;9:19215-30. doi: 10.1021/acsami.7b04066, PMID 28513132
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine 2005;1:193-212. doi: 10.1016/j.nano.2005.06.004, PMID 17292079
Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomed 2013;8:2041-52. doi: 10.2147/IJN.S43683, PMID 23723699
Mathew AP, Cho KH, Uthaman S, Cho CS, Park IK. Stimuli-regulated smart polymeric systems for gene therapy. Polymers (Basel) 2017;9:152. doi: 10.3390/polym9040152, PMID 30970831
Moghaddam SP, Saikia J, Yazdimamaghani M, Ghandehari H. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Appl Mater Interfaces 2017;9:21133-46. doi: 10.1021/acsami.7b04351, PMID 28609092
Moritz M, Geszke-Moritz M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med 2015;24:749-58. doi: 10.17219/acem/31802, PMID 26768624
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003. doi: 10.1038/nmat3776, PMID 24150417
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59. doi: 10.1016/j.addr.2004.02.014, PMID 15350294
Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008;97:3518-90. doi: 10.1002/jps.21270, PMID 18200527
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006;2:8-21. doi: 10.1016/j.nano.2005.12.003, PMID 17292111
Sahu SK, Mallick SK, Santra S, Maiti TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci Mater Med 2010;21:1587-97. doi: 10.1007/s10856-010-3998-4, PMID 20111985
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2004;2:3. doi: 10.1186/1477-3155-2-3, PMID 15119954
Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, et al. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 2006;17:943-9. doi: 10.1021/bc060080h, PMID 16848401.
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176
Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B Biointerfaces 2011;87:454-63. doi: 10.1016/j. colsurfb.2011.06.009, PMID 21719259
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2013;48:416-27. doi: 10.1016/j. ejps.2012.12.006, PMID 23262059
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16. doi: 10.1186/1745-6673-2- 16, PMID 18053152
Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005;1:172-9. doi: 10.1002/smll.200400130, PMID 17193427
Karra N, Benita S. The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab 2012;13:22-41. doi: 10.2174/138920012798356899, PMID 21892918
Pelaz B, Charron G, Pfeiffer C, Zhao Y, de la Fuente JM, Liang XJ, et al. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small 2013;9:1573-84. doi: 10.1002/smll.201201229, PMID 23112130.
Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3. doi: 10.1186/1743- 8977-7-3, PMID 20199661
Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994;12:299-306. doi: 10.1016/0264-410x(94)90092-2, PMID 8178550
Margolis DJ, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology 2007;245:333-56. doi: 10.1148/radiol.2452061117, PMID 17940297
Baviskar DT, Jain DK. Novel Drug Delivery Systems. Pune, Maharashtra: Nirali Prakashan; 2018;14:1.
Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice. Nat Rev Cancer 2002;2:11-8. doi: 10.1038/nrc701, PMID 11902581
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4021. doi: 10.1016/j.biomaterials.2004.10.012, PMID 15626447
Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59:631-44. doi: 10.1016/j.addr.2007.05.003, PMID 17601629
Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3. doi: 10.1126/science.8128245, PMID 8128245.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Kondapuram Parameshwar
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.