A REVIEW OF MERELY POLYMERIC NANOPARTICLES IN RECENT DRUG DELIVERY SYSTEM

Authors

  • KONDAPURAM PARAMESHWAR GITAM Institute of Pharmacy, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, Andhra Pradesh, India.
  • SUVENDU KUMAR SAHOO GITAM Institute of Pharmacy, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, Andhra Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i4.43239

Keywords:

Nanotechnology, Polymeric nanoparticles, Supercritical fluid technology, Nanomedicine, Drug efficacy

Abstract

Synthetic, semi-synthetic, and natural polymers make up the colloidal formations of polymeric nanoparticles. Because of their large surface area and nanoscale size, nanoparticles have unique physical and chemical capabilities. Their distinct size, shape, and structure influence their optical characteristics, reactivity, durability, and other attributes. Supercritical fluids, in which the fluid retains a single-phase regardless of pressure, are environmentally beneficial. It is in a state of minor criticality. Because the precipitate is solvent-free, this method is environmentally friendly. Due to their qualities, they are good candidates for various commercial and marital uses, including catalysis, imaging, pharmaceutical applications, energy-based research, and ecological applications. This review provides a supercritical fluid technology-based polymeric nanoparticles overview of various forms uses, synthesis, properties, and forthcoming prospects.

Downloads

Download data is not yet available.

References

Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release 2002;78:15-24. doi: 10.1016/s0168-3659(01)00486-2, PMID 11772445

Mohanraj VJ, Chen Y. Nanoparticles a review. Trop J Pharm Res 2006;5:561-73. doi: 10.4314/tjpr.v5i1.14634

Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC- 12 cells induces dopamine depletion. Toxicol Sci 2006;92:456-63. doi: 10.1093/toxsci/kfl020, PMID 16714391

Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 2016;60:569-78. doi: 10.1016/j.msec.2015.11.067, PMID 26706565

Asai T, Tsuzuku T, Takahashi S, Okamoto A, Dewa T, Nango M, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014;444:599-604. doi: 10.1016/j.bbrc.2014.01.107, PMID 24486551

Kadam RS, Bourne DW, Kompella UB. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metab Dispos 2012;40:1380-8. doi: 10.1124/ dmd.112.044925, PMID 22498894

Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001;218:75-80. doi: 10.1016/s0378-5173(01)00614-7, PMID 11337151

Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing Vitamin E TPGS. J Control Release 2003;86:33-48. doi: 10.1016/ s0168-3659(02)00320-6, PMID 12490371

Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005;2:369-81. doi: 10.2174/156720105774370159, PMID 16305440

Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25:1771-7. doi: 10.1016/j.biomaterials.2003.08.069, PMID 14738840

Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, et al. Pegylated polycyanoacrylate nanoparticles as tumor necrosis factor-alpha carriers. J Control Release 2001;71:287-96. doi: 10.1016/s0168-3659(01)00235- 8, PMID 11295221

Thote AJ, Gupta RB. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 2005;1:85-90. doi: 10.1016/j.nano.2004.12.001, PMID 17292062

Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014;10:321-32. doi: 10.4161/hv.26796, PMID 24128651

Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 1996;13:1838-45. doi: 10.1023/a:1016085108889, PMID 8987081

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1- 18. doi: 10.1016/j.colsurfb.2009.09.001, PMID 19782542

Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: A comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 1998;43:879-86; discussion 886. doi: 10.1097/00006123- 199810000-00090, PMID 9766316

Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006;92:5-22. doi: 10.1093/toxsci/kfj130, PMID 16484287

Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80- coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409-16. doi: 10.1023/a:1022604120952, PMID 12669961

Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 2003;52:981-6. doi: 10.1093/jac/dkg477, PMID 14613962

Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. J Control Release 2001;71:39-51. doi: 10.1016/s0168-3659(00)00358-8, PMID 11245907

Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co- poloxamine 908: In vitro characterisation and in vivo evaluation. J Control Release 2001;70:353-63. doi: 10.1016/s0168-3659(00)00367- 9, PMID 11182205

Müller RH, Wallis KH. Surface modification of IV injectable biodegradable nanoparticles with poloxamer polymer and poloxamine 908. Int J Pharm 1993;89:25-31. doi: 10.1016/0378- 5173(93)90304-X

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51. doi: 10.1016/s0169- 409x(02)00044-3, PMID 12204596

Olivier JC. Drug transport to brain with targeted nanoparticles. Neurorx 2005;2:108-19. doi: 10.1602/neurorx.2.1.108, PMID 15717062

Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62. doi: 10.1016/j.bmc.2009.02.043, PMID 19299149

Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000;199:95-110. doi: 10.1016/s0378-5173(00)00375-6, PMID 10794931

Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004;93:1804-14. doi: 10.1002/jps.20094, PMID 15176068

Banerjee SS, Chen DH. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008;19:505104. doi: 10.1088/0957-4484/19/50/505104

Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014;9:223-43. doi: 10.1016/j. nantod.2014.04.008, PMID 25132862

Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014;2:904-8. doi: 10.3892/mco.2014.356, PMID 25279172

Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012;7:9. doi: 10.3892/mco.2014.356, PMID 25279172

Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007;8:1966-72. doi: 10.1021/bm070085x, PMID 17497921

Chen JP, Leu YL, Fang CL, Chen CH, Fang JY. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci 2011;100:655-66. doi: 10.1021/bm070085x, PMID 17497921

Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng L, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016;6:435-45. doi: 10.7150/thno.13896, PMID 26909117

Scott C, Wu D, Ho CC, Co CC. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick. J Am Chem Soc 2005;127:4160-1. doi: 10.1021/ja044532h, PMID 15783184

Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 2017;6:201700433. doi: 10.1002/ adhm.201700433, PMID 28752598

Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, et al. Dextran-b-poly(L-histidine) copolymer nanoparticles for ph-responsive drug delivery to tumor cells. Int J Nanomed 2013;8:3197-207. doi: 10.2147/IJN.S49459, PMID 23986636

James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 2014;4:120-7. doi: 10.1016/j.apsb.2014.02.005, PMID 26579373

Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015;3:955- 87. doi: 10.1039/c5bm00002e, PMID 26221933

Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacol 2012;2012:571394. doi: 10.5402/2012/571394

Li G, Guo L, Chang X, Yang M. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 2012;50:899-904. doi: 10.1016/j. ijbiomac.2012.02.013, PMID 22679630

Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, et al. α-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Applpoloxamine 908: In vitro characterisation and in vivo evaluation. J Control Release 2001;70:353-63. doi: 10.1016/s0168-3659(00)00367- 9, PMID 11182205

Müller RH, Wallis KH. Surface modification of IV injectable biodegradable nanoparticles with poloxamer polymer and poloxamine 908. Int J Pharm 1993;89:25-31. doi: 10.1016/0378- 5173(93)90304-X

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51. doi: 10.1016/s0169- 409x(02)00044-3, PMID 12204596

Olivier JC. Drug transport to brain with targeted nanoparticles. Neurorx 2005;2:108-19. doi: 10.1602/neurorx.2.1.108, PMID 15717062

Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62. doi: 10.1016/j.bmc.2009.02.043, PMID 19299149

Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000;199:95-110. doi: 10.1016/s0378-5173(00)00375-6, PMID 10794931

Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004;93:1804-14. doi: 10.1002/jps.20094, PMID 15176068

Banerjee SS, Chen DH. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008;19:505104. doi: 10.1088/0957-4484/19/50/505104

Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014;9:223-43. doi: 10.1016/j. nantod.2014.04.008, PMID 25132862

Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014;2:904-8. doi: 10.3892/mco.2014.356, PMID 25279172

Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012;7:9. doi: 10.3892/mco.2014.356, PMID 25279172

Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007;8:1966-72. doi: 10.1021/bm070085x, PMID 17497921

Chen JP, Leu YL, Fang CL, Chen CH, Fang JY. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci 2011;100:655-66. doi: 10.1021/bm070085x, PMID 17497921

Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng L, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016;6:435-45. doi: 10.7150/thno.13896, PMID 26909117

Scott C, Wu D, Ho CC, Co CC. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick. J Am Chem Soc 2005;127:4160-1. doi: 10.1021/ja044532h, PMID 15783184

Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 2017;6:201700433. doi: 10.1002/ adhm.201700433, PMID 28752598

Hwang JH, Choi CW, Kim HW, Kim DH, Kwak TW, Lee HM, et al. Dextran-b-poly(L-histidine) copolymer nanoparticles for ph-responsive drug delivery to tumor cells. Int J Nanomed 2013;8:3197-207. doi: 10.2147/IJN.S49459, PMID 23986636

James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 2014;4:120-7. doi: 10.1016/j.apsb.2014.02.005, PMID 26579373

Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015;3:955- 87. doi: 10.1039/c5bm00002e, PMID 26221933

Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacol 2012;2012:571394. doi: 10.5402/2012/571394

Li G, Guo L, Chang X, Yang M. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 2012;50:899-904. doi: 10.1016/j. ijbiomac.2012.02.013, PMID 22679630

Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, et al. α-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS ApplMater Interfaces 2017;9:19215-30. doi: 10.1021/acsami.7b04066, PMID 28513132

Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine 2005;1:193-212. doi: 10.1016/j.nano.2005.06.004, PMID 17292079

Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomed 2013;8:2041-52. doi: 10.2147/IJN.S43683, PMID 23723699

Mathew AP, Cho KH, Uthaman S, Cho CS, Park IK. Stimuli-regulated smart polymeric systems for gene therapy. Polymers (Basel) 2017;9:152. doi: 10.3390/polym9040152, PMID 30970831

Moghaddam SP, Saikia J, Yazdimamaghani M, Ghandehari H. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Appl Mater Interfaces 2017;9:21133-46. doi: 10.1021/acsami.7b04351, PMID 28609092

Moritz M, Geszke-Moritz M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med 2015;24:749-58. doi: 10.17219/acem/31802, PMID 26768624

Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003. doi: 10.1038/nmat3776, PMID 24150417

Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59. doi: 10.1016/j.addr.2004.02.014, PMID 15350294

Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008;97:3518-90. doi: 10.1002/jps.21270, PMID 18200527

Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006;2:8-21. doi: 10.1016/j.nano.2005.12.003, PMID 17292111

Sahu SK, Mallick SK, Santra S, Maiti TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci Mater Med 2010;21:1587-97. doi: 10.1007/s10856-010-3998-4, PMID 20111985

Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2004;2:3. doi: 10.1186/1477-3155-2-3, PMID 15119954

Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, et al. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 2006;17:943-9. doi: 10.1021/bc060080h, PMID 16848401.

Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176

Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B Biointerfaces 2011;87:454-63. doi: 10.1016/j. colsurfb.2011.06.009, PMID 21719259

Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2013;48:416-27. doi: 10.1016/j. ejps.2012.12.006, PMID 23262059

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16. doi: 10.1186/1745-6673-2- 16, PMID 18053152

Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005;1:172-9. doi: 10.1002/smll.200400130, PMID 17193427

Karra N, Benita S. The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab 2012;13:22-41. doi: 10.2174/138920012798356899, PMID 21892918

Pelaz B, Charron G, Pfeiffer C, Zhao Y, de la Fuente JM, Liang XJ, et al. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small 2013;9:1573-84. doi: 10.1002/smll.201201229, PMID 23112130.

Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3. doi: 10.1186/1743- 8977-7-3, PMID 20199661

Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994;12:299-306. doi: 10.1016/0264-410x(94)90092-2, PMID 8178550

Margolis DJ, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology 2007;245:333-56. doi: 10.1148/radiol.2452061117, PMID 17940297

Baviskar DT, Jain DK. Novel Drug Delivery Systems. Pune, Maharashtra: Nirali Prakashan; 2018;14:1.

Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice. Nat Rev Cancer 2002;2:11-8. doi: 10.1038/nrc701, PMID 11902581

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4021. doi: 10.1016/j.biomaterials.2004.10.012, PMID 15626447

Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59:631-44. doi: 10.1016/j.addr.2007.05.003, PMID 17601629

Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3. doi: 10.1126/science.8128245, PMID 8128245.

Published

07-04-2022

How to Cite

PARAMESHWAR, K., and S. K. SAHOO. “A REVIEW OF MERELY POLYMERIC NANOPARTICLES IN RECENT DRUG DELIVERY SYSTEM”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 4, Apr. 2022, pp. 4-12, doi:10.22159/ajpcr.2022.v15i4.43239.

Issue

Section

Review Article(s)

Most read articles by the same author(s)