ANTI-LITHIATIC EFFECT OF LYCOPENE IN CHEMICALLY INDUCED NEPHROLITHIASIS IN RATS
DOI:
https://doi.org/10.22159/ajpcr.2022.v15i7.44969Keywords:
Ethylene Glycol, Ammonium chloride, Lycopene, NephrolithiasisAbstract
Objective: The search for anti-calculi drugs from natural sources has been believed of greater importance. Hence, the present study explored the effectiveness of lycopene against experimentally induced nephrolithiasis.
Methods: The experimental study lasted for 28 days. Adult male Wistar rats were divided into six groups. Group I (Normal control) received drinking water. Group II (Disease control) received 0.75% ethylene glycol and 1% ammonium chloride in drinking water to induce nephrolithiasis. Group III–V was treated with lycopene (50 mg/kg, 100 mg/kg, and 200 mg/kg, p.o.) along with 0.75% ethylene glycol and 1% ammonium chloride. Group VI treated standard (750 mg/kg, p.o.) along with 0.75% ethylene glycol and 1% ammonium chloride.
Results: The study results showed significantly high levels of urinary and serum creatinine, urea, calcium, and uric acid levels and a decrease in magnesium levels in Group II (Disease control) compared with Group I (Normal control). Treatment with lycopene (50 mg/kg, 100 mg/kg, and 200 mg/kg) restored the elevated urinary and serum parameters in Group III–VI compared with Group II. Ethylene glycol administrations lead to the production of oxidative stress and decrease superoxide dismutase, reduced glutathione, and catalase activity. Lycopene treatment restored the elevated oxidative stress parameters to normal. Histologically, lycopene has alleviated the damaged integrity of the renal structure.
Conclusion: Supplementation with lycopene (100 mg/kg and 200 mg/kg) reduces and prevents the toxicity caused by ethylene glycol administration and protects the renal cells from damage.
Downloads
References
Nirumand MC, Hajialyani M, Rahimi R, Farzaei MH, Zingue S, Nabavi SM, et al. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms. Int J Mol Sci 2018;19765. doi: 10.3390/ijms19030765, PMID 29518971
Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR, Alexander KM, et al. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2002;61:975-87. doi: 10.1046/j.1523-1755.2002.00190.x, PMID 11849452
Aggarwal D, Gautam D, Sharma M, Singla SK. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur J Pharmacol 2016;791:611-21. doi: 10.1016/j.ejphar.2016.10.002, PMID 27717728
Nagal A, Singla RK. Herbal resources with antiurolithiatic effects: A review. Indo Glob J Pharm Sci 2013;3:6-14.
Kaya C, Karabulut R, Turkyilmaz Z, Sonmez K, Kulduk G, Gülbahar Ö, et al. Lycopene has reduced renal damage histopathologically and biochemically in experimental renal ischemia-reperfusion injury. Ren Fail 2015;37:1390-5. doi: 10.3109/0886022X.2015.1064742, PMID 26161692
Cohen LA. A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med (Maywood) 2002;227:864-8. doi: 10.1177/153537020222701005, PMID 12424327
Heber D, Lu QY. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood) 2002;227:920-3. doi: 10.1177/153537020222701013, PMID 12424335
Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med 2003;24:345-51. doi: 10.1016/s0098-2997(03)00030-x, PMID 14585305
Matos HR, Di Mascio P, Medeiros MH. Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell culture. Arch Biochem Biophys 2000;383:56-9. doi: 10.1006/abbi.2000.2035, PMID 11097176
Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 2005;212:116-23. doi: 10.1016/j.tox.2005.04.016, PMID 15946783
Karahan I, Ateşşahin A, Yilmaz S, Çeribaşi AO, Sakin F. Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 2005;215:198-204. doi: 10.1016/j. tox.2005.07.007, PMID 16125832
Sridharan B, Michael ST, Arya R, Roopan SM, Ganesh RN, Viswanathan P. Beneficial effect of Citrus Limon peel aqueous methanol extract on experimentally induced urolithic rats. Pharm Biol 2016;54:759-69. doi: 10.3109/13880209.2015.1079724, PMID 26452728
Cand F, Verdetti J. Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free Radic Biol Med 1989;7:59-63. doi: 10.1016/0891-5849(89)90101- 9, PMID 2753396
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. doi: 10.1016/0003-2697(79)90738-3, PMID 36810
Veena CK, Josephine A, Preetha SP, Rajesh NG, Varalakshmi P. Mitochondrial dysfunction in an animal model of hyperoxaluria: A prophylactic approach with fucoidan. Eur J Pharmacol 2008;579:330- 6. doi: 10.1016/j.ejphar.2007.09.044, PMID 18001705
Makasana A, Ranpariya V, Desai D, Mendpara J, Parekh V. Evaluation for the anti-urolithiatic activity of Launaea procumbens against ethylene glycol-induced renal calculi in rats. Toxicol Rep 2014;1:46- 52. doi: 10.1016/j.toxrep.2014.03.006, PMID 28962225
Bano H, Jahan N, Makbul SA, Kumar BN, Husain S, Sayed A. Effect of Piper cubeba L. fruit on ethylene glycol and ammonium chloride induced urolithiasis in male Sprague Dawley rats. Integr Med Res 2018;7:358-65. doi: 10.1016/j.imr.2018.06.005, PMID 30591890
El Menyiy N, Al Waili N, Bakour M, Al-Waili H, Lyoussi B. Protective effect of propolis in proteinuria, crystaluria, nephrotoxicity and hepatotoxicity induced by ethylene glycol ingestion. Arch Med Res 2016;47:526-34. doi: 10.1016/j.arcmed.2016.12.010, PMID 28262194
Shah JG, Patel BG, Patel SB, Patel RK. Antiurolithiatic and antioxidant activity of Hordeum vulgare seeds on ethylene glycol-induced urolithiasis in rats. Indian J Pharmacol 2012;44:672-7. doi: 10.4103/0253-7613.103237, PMID 23248392
Partovi N, Ebadzadeh MR, Fatemi SJ, Khaksari M. Antilithiatic effect of aqueous and ethanolic extracts of cactus prickly pear in chemically induced urolithiasis in rats. Toxin Rev 2018;37:166-70. doi: 10.1080/15569543.2017.1325906
Pawar AT, Vyawahare NS. Protective effect of standardized extract of Biophytum sensitivum against calcium oxalate urolithiasis in rats. Bull Fac Pharm Cairo Univ 2015;53:161-72. doi: 10.1016/j. bfopcu.2015.10.002
Alenzi M, Rahiman S, Tantry BA. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis. Investig Clin Urol 2017;58:210-6. doi: 10.4111/icu.2017.58.3.210, PMID 28480348
Ardawi MS, Badawoud MH, Hassan SM, Rouzi AA, Ardawi JM, AlNosani NM, et al. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model. Bone 2016;83:127-40. doi: 10.1016/j.bone.2015.10.017, PMID 26549245
Ghelani H, Chapala M, Jadav P. Diuretic and antiurolithiatic activities of an ethanolic extract of Acorus calamus L. rhizome in experimental animal models. J Tradit Complement Med 2016;6:431-6. doi: 10.1016/j. jtcme.2015.12.004, PMID 27774431
Ghaeni FA, Amin B, Hariri AT, Meybodi NT, Hosseinzadeh H. Antilithiatic effects of crocin on ethylene glycol-induced lithiasis in rats. Urolithiasis 2014;42:549-58. doi: 10.1007/s00240-014-0711-y, PMID 25173352
Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Hayes AW, Hosseini S, et al. Protective effect of lycopene against chemical and natural toxins: A review. Biofact
Published
How to Cite
Issue
Section
Copyright (c) 2022 Priyal Patel, Sandip Patel, Veena Patel
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.