BIOLOGICAL STUDIES OF 4-AMINO BENZAMIDE DERIVED 1,2,3-TRIAZOLE LINKED CHALCONE AND ITS PYRAZOLINE DERIVATIVES

Authors

  • SATHIYA S Department of Chemistry, Vivekanandha College of Arts and Sciences for Women, Namakkal, Tamil Nadu, India.
  • KRISHNAMOORTHY BS Department of Chemistry (UA), PSG College of Arts and Science, Coimbatore, Tamil Nadu, India.
  • MEENACHI S Department of Chemistry, K. S. Rangasamy College of Technology, Namakkal, Tamil Nadu, India.
  • RAVIKUMAR R Department of Chemistry, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i9.45089

Keywords:

1,2,3-triazole, Chalcone, Pyrazoline, Anti-microbial activity , anti-oxidant activity.

Abstract

Objectives: The present work planned to investigate the anti-bacterial, anti-fungal, and anti-oxidant activity against 4-amino benzamide derived 1,2,3-triazole linked chalcone and pyrazoline derivatives.

Methods: Anti-microbial activity for pyrazoline derivatives was accomplished by serial dilution method. The test organisms of bacterial strains were (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas fluorescence) and the fungal cultures (Aspergillus niger, Aspergillus terreus, and Trichoderma harzanium). The method used in the anti-oxidant activity is 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide scavenging method.

Results: All the compounds showed good to moderate anti-bacterial and anti-fungal activities. The results of IC50 values showed lower potent inhibition activity with DPPH and higher potent inhibition activity in nitric oxide scavenging method.

Conclusion: All the compounds had exhibited capricious growth inhibitory effect on anti-bacterial, anti-fungal, and anti-oxidant activities.

Downloads

Download data is not yet available.

References

Sathiya S, Nandhabala S, Hari N, Paranthaman R, Sankar A, Ravikumar R. Synthesis and antimicrobial activity of novel 4-amino benzamide derived 1,2,3-triazole linked pyrazolines. Rasayan J Chem 2019;12:2260-6. doi: 10.31788/RJC.2019.1245383

Sathiya S, Keerthika A, Krishnamoorthy BS, Nandhabala S, Aravind S, Hari N, et al. Synthesis of novel pyrazolines and their antimicrobial activity. Rasayan J Chem 2020;13:676-83. doi: 10.31788/ RJC.2020.1315568

Kumar S, Meenakshi KS, Kumar S, Kumar P. Synthesis and antimicrobial activity of some (3-phenyl-5-(1-phenyl-3-aryl-1H-pyrazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanones: New derivatives of 1,3,5-trisubstituted pyrazolines. Med Chem Res 2013;22:433-9. doi: 10.1007/s00044-012-0045-7

Sharshira EM, Hamada NM. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules 2012;17:4962-71. doi: 10.3390/ molecules17054962, PMID 22547318

Shaaban MR, Mayhoub AS, Farag AM. Recent advances in the therapeutic applications of pyrazolines. Expert Opin Ther Pat 2012;22:253-91. doi: 10.1517/13543776.2012.667403, PMID 22397588

Husain A, Ahmad A, Mkhalid IA, Mishra R, Rashid M. Synthesis and antimicrobial activity of bischalcones derivatives. Med Chem Res 2013;22:1578-86. doi: 10.1007/s00044-012-0137-4

Lal K, Yadav P, Kumar A, Kumar AK, Paul AK. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acidchalcone-1,2,3-triazole hybrids. Bioorg Chem 2018;77:236-44. doi: 10.1016/j.bioorg.2018.01.016, PMID 29421698

Chavan PV, Pandit KS, Desai UV, Kulkarni MA, Wadgaonkar PP. Cellulose supported cuprous iodide nanoparticles (Cell-CuI NPs): A new heterogeneous and recyclable catalyst for the one pot synthesis of 1,4-disubstituted-1,2,3-triazoles in water. RSC Adv 2014;4:42137- 46. doi: 10.1039/C4RA05080K

Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015;98:69-114. doi: 10.1016/j.ejmech.2015.05.004, PMID 26005917

Singh P, Raj R, Kumar V, Mahajan MP, Bedi PM, Kaur T, et al. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 2012;47:594-600. doi: 10.1016/j.ejmech.2011.10.033, PMID 22071256

Kabalka GW, Mereddy AR. Microwave promoted synthesis of functionalized 2-aminothiazoles. Tetrahedron Lett 2006;47:5171-2. doi: 10.1016/j.tetlet.2006.05.053

Das B, Reddy VS, Ramu RJ. (Bromodimethyl) sulfonium bromide: An efficient catalyst for solvent-free synthesis of 1,5-benzodiazepines. Mol Catal Ann Chim 2006;252:235-7.

Karade H, Sathe M, Kaushik MP. An efficient method for the synthesis of 2-aminothiazoles using silica chloride as a heterogeneous catalyst. Catal Commun 2007;8:741-6. doi: 10.1016/j.catcom.2006.09.005

Karegoudar P, Karthikeyan MS, Prasad DJ, Mahalinga M, Holla BS, Kumari NS. Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents. Eur J Med Chem 2008;43:261-7. doi: 10.1016/j.ejmech.2007.03.014, PMID 17540482

Holla BS, Malini KV, Rao BS, Sarojini BK, Kumari NS. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur J Med Chem 2003;38:313-8. doi: 10.1016/ s0223-5234(02)01447-2, PMID 12667698

Kaushik CP, Luxmi R, Singh D, Kumar A. Synthesis, antimicrobial activity, and QSAR studies of amide-ester linked 1, 4-disubstituted 1, 2, 3-triazoles. Monatsh Chem 2017;21:765-79.

BuritsM, BucarF. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000;14:323-8. doi: 10.1002/1099-1573(200008)14:5<323:aid-ptr621>3.0.co;2-q, PMID 10925395

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate and 15N in biological fluids. Anal Biochem 1982;239:131-8.

Published

07-09-2022

How to Cite

S, S., K. BS, M. S, and R. R. “BIOLOGICAL STUDIES OF 4-AMINO BENZAMIDE DERIVED 1,2,3-TRIAZOLE LINKED CHALCONE AND ITS PYRAZOLINE DERIVATIVES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 9, Sept. 2022, pp. 94-97, doi:10.22159/ajpcr.2022.v15i9.45089.

Issue

Section

Original Article(s)