FLAVONES AND THEIR DERIVATIVES: SYNTHETIC AND PHARMACOLOGICAL IMPORTANCE
DOI:
https://doi.org/10.22159/ajpcr.2022.v15i7.45190Keywords:
Flavones, flavones derivatives, flavones synthesis, flavones reaction, pharmaceutical applicationAbstract
Flavones (from the Latin flavus, which means “yellow”) are a kind of flavonoid with a backbone of 2-phenylchromen-4-one. Flavones, one of the most important classes of plant secondary metabolites, are well-known for their anti-cancer, anti-inflammatory, anti-microbial, antioxidant, anti-osteoporatic, anti-diabetic, anti-estrogenic, anti-allergic, and metal chelating properties. These family compounds have been intensively studied synthetically due to their wide spectrum of biological actions, and more than 4000 chemically distinct flavonoids have been identified from plants. However, new advances in synthetic chemistry have resulted in the production of a number of therapeutically important derivatives. This article summarizes the synthesis of flavones, their derivatives, and other flavone analogues which have the potential for treating a range of illnesses and ailments.
Downloads
References
Agrawal OP. Organic Chemistry of Natural Products. Vol. 2. Meerut: Krishna Prakashan Media (P) Ltd., Meerut (Goel Publishing House); 1980. p. 184-90.
Haslam EA. Chemistry and Pharmacology of Natural Products. Sydney, Australia: Cambridge University Press; 1989. p. 8-12.
Smith MA, Perry G, Richey PL, Sayrec LM, Anderson VE, Beal MF, et al. Oxidative damage in Alzheimer’s. Nature 1996;382:120-1.
Verma AK, Nas R. The biological potential of flavones. Pratap Prod Rep 2010;27:1571-93.
Liu HL, Jiang WB, Xie MX. Flavonoids: Recent advances as anticancer drugs. Recent Patents Anticancer Drug Discov 2010;5:152-64.
Manthey JA, Grohmann K, Montanari A, Ash K, Manthey CL. Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-α expression by human monocytes. J Nat Prod 1999;62:441-4.
Maurya R, Rawat P, Sharan K, Siddiqui JA, Swarnkar G, Mishra G, et al. Novel Flavonol Compounds, A Bioactive Extract/Fraction from Ulmus wallichiana and its Compounds for Prevention for Treatment of Osteo-health Related Disorders. World Patient, No. 110003.
Kunimasa K, Kuranuki S, Matsuura N, Iwasaki N, Ikeda M, Ito A, et al. Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion. Bioorg Med Chem Lett 2009;19:2062-4.
Theja DN, Choudary TP, Reddy MI, Gupta A, Reddy KU. A facile synthesis of flavone derivatives used as potent anti-inflammatory agents. Int J Pharm Pharm Sci 2011;3:51-4.
Nawghare BR, Gaikwad SV, Raheem A, Lokhande PD. Iodine catalyzed cascade synthesis of flavone derivatives from 2’-allyloxy-α, β-dibromochalcones. J Chilean Chem Soc 2014;59:2284-6.
Garg V, Kumar A, Chaudhary A, Agrawal S, Tomar P, Sreenivasan KK. Department of Pharmaceutical Chemistry and Medicinal Chemistry Research. New York: Springer Science and Business Media; 2013.
Masesane IB, Desta ZY. Reactions of salicylaldehyde and enolates or their equivalents: Versatile synthetic routes to chromane derivatives. Beilstein J Org Chem 2012;8:2166-75.
Khan AT, Goswami P. A highly efficient and environmentally benign synthesis of 6, 8-dibromoflavones, 8-bromoflavones, 5, 7-dibromoaurones and 7-bromoaurones. Tetrahedron Lett 2005;46:4937-40.
Ahmed N, Ali H, van Lier JE. Silica gel supported InBr3 and InCl3: New catalysts for the facile and rapid oxidation of 2’-hydroxychalcones and flavanones to their corresponding flavones under solvent free conditions. Tetrahedron Lett 2005;46:253-6.
Moreira J, Ribeiro D, Silva PM, Nazareth N, Monteiro M, Palmeira A, et al. New alkoxy flavone derivatives targeting caspases: Synthesis and antitumor activity evaluation. Molecules 2018;24:129.
Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chromone: A valid scaffold in medicinal chemistry. Chem Rev 2014;114:4960-92.
Sethna SM, Shah NM. The chemistry of coumarins. Chem Rev 1945;36:1-62.
Kostanecki I. A formation of chromone derivatives. Rozycki Ber Dtsch Chem Ges 1901;34:102.
Eleya N, Malik I, Reimann S, Wittler K, Hein M, Patonay T, et al. Eur J Organic Chem 2012;2012:4914-7.
Emilewiez T, Kostanecki VS. Chem Ber 1998;31:696.
Pfister JR, Wymann WE, Schuler ME, Roszkowski AP. Inhibition of histamine-induced gastric secretion by flavone-6-carboxylic acids. J Med Chem 1980;23:335-8.
Donnelly DJ, Donnelly JA, Philbin EM. Chalcone dihalides III: Cyclization of nitro derivatives. Tetrahedron 1972;28:1867-71.
Dawane SB, Vibhute BY, Chavan PV, Mane SA, Shingare SM. J Korean Med Chem 2000;10:78-83.
Southwick PL, Kirchner JR. A new synthesis of flavone involving cyclization via displacement of aromatic chlorine. J Am Chem Soc 1957;79:689-91.
Kasahara A, Izumi T, Ooshima M. A new method of preparing flavones. Bull Chem Soc Jpn 1974;47:2526-8.
Cushman M, Nagarathnam D. A method for the facile synthesis of ring-A hydroxylated flavones. Tetrahedron Lett 1990;31:6497-500.
Daniel D, Laetitia M. Tetrahedron Lett 1995;36:1845-8.
Sarda SR, Jadhav WN, Pawar RP. I2-Al2O3: A suitable heterogeneous catalyst for the synthesis of flavones under microwave irradiation. Int J ChemTech Res 2009;1:539-43.
Lydia K, Tomke B, Tobias A, Nigst K, Knochel KJ. Lewis acid-triggered selective zincation of chromones, quinolones, and thiochromones: Application to the preparation of natural flavones and isoflavones. Am Chem Soc 2012;134:13584-7.
Krishnamurthi M, Parthasarthi J. ???. Ind J Chem 1980;19B:816.
Boumendjel A, Bois F, Beney C, Mariotte AM, Conseil G, Di Pietro A. B-ring substituted 5, 7-dihydroxyflavonols with high-affinity binding to P-glycoprotein responsible for cell multidrug resistance. Bioorg Med Chem Lett 2001;11:75-7.
Goyal S, Parthasarathy RM. ???. Ind J Chem 1992;3IB:391-5.
Bhatti PS, Garg PC, Kapoor PR. ???. Ind J Chem 1995;34B:879-89.
Makrandi KJ, Kumar S. ???. Ind J Chem 2004;43B:895-6.
Uchil RV, Joshi V. ???. Ind J Het Chem 2001;10:161-6.
Kumari UT, Krupadanam GL, Srimannarayana G. ???. Ind J Chem 1998;37B:847-50.
Nakagawa-Goto K, Bastow KF, Wu JH, Tokuda H, Lee KH. Total synthesis and bioactivity of unique flavone desmosdumotin B and its analogs. Bioorg Med Chem Lett 2005;15:3016-9.
Iqbal J, Fatma W, Shaida W, Rahman W. ???. J Chem Res 1982;4:92.
Doshi AG, Soni PA, Ghiya BJ. Oxidation of 2’‐Hydroxychalcones. Chemischer Informationsdienst 1986;17:759.
(a) Singh VO, Khanna SM, Garg PC, Kapoor PR. ???. Ind J Chem 1993;32B:1241-8. (b) Lokhande DP, Waghmare YB, Sakate SS. Regioselective one-pot synthesis of 3, 5-diarylpyrazoles. Ind J Chem 2005;44:2338-42.
Joshi SN, Shaikh AA, Deshpande PA, Karale KB, Bhirud BS, Gill HC. ???. Ind J Chem 2005; ???:422-5.
Rao SP, Reddy VK, Ashok D. ???. Ind J Chem 2000;39B:557-9.
Floch LY, Lefeuvre M. ???. Tetrahedron Lett 1986;27:2751, 5503.
Kalinin VN, Shostakovsky MV, Ponomaryov AB. Palladium-catalyzed synthesis of flavones and chromones via carbonylative coupling of o-iodophenols with terminal acetylenes. Tetrahedron Lett 1990;31:4073-6.
Dao TT, Kim SB, Sin KS, Kim S, Kim HP, Park H. Synthesis and biological activities of 8-arylflavones. Arch Pharmacol Res 2004;27:278-82.
Dao TT, Chi YS, Kim J, Kim HP, Kim S, Park H. Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives. Bioorg Med Chem Lett 2004;14:1165-7.
Zheng X, Meng WD, Xu YY, Cao JG, Qing FL. Synthesis and anticancer effect of chrysin derivatives. Bioorg Med Chem Lett 2003;13:881-4.
Baker W. 322. Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones. J Chem Soc (Resumed) 1933; ???:1381-9.
Mahal HS, Venkataraman K. 387. Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2- acetonaphthones. J Chem Soc (Resumed) 1934; ???:1767-9.
Wheeler TS. “Flavone”. Org Synth 1952;32:72.
Jain PK, Makrandi JK, Grover SK. A facile Baker-Venkataraman synthesis of flavones using phase transfer catalysis. Synthesis 1982;1982:221-2.
Kalinin AV, da Silva AJ, Lopes CC, Lopes RS, Snieckus V. Directed ortho metalation-cross coupling links. Carbamoyl rendition of the baker-venkataraman rearrangement. Regiospecific route to substituted 4-hydroxycoumarins. Tetrahedron Lett 1998;39:4995-8.
Kraus GA, Fulton BS, Wood SH. Aliphatic acyl transfer in the Baker- Venkataraman reaction. J Org Chem 1984;49:3212-4.
Reddy BP, Krupadanam GD. The synthesis of 8‐allyl‐2‐styrylchromones by the modified baker‐venkataraman transformation. J Heterocycl Chem 1996;33:1561-5.
Kalinin AV, Snieckus V. 4, 6-Dimethoxy-3, 7-dimethylcoumarin from Colchicum decaisnei. Total synthesis by carbamoyl Baker- Venkataraman rearrangement and structural revision to isoeugenetin methyl ether. Tetrahedron Lett 1998;39:4999-5002.
Thasana N, Ruchirawat S. The application of the Baker–Venkataraman rearrangement to the synthesis of Benz [b] indeno [2, 1-e] pyran-10, 11-dione. Tetrahedron Lett 2002;43:4515-7.
Santos CM, Silva AM, Cavaleiro JA. Synthesis of new hydroxy‐2‐ styrylchromones. Eur J Org Chem 2003;2003:4575-85.
Santos CM, Silva AM. An overview of 2‐styrylchromones: Natural occurrence, synthesis, reactivity and biological properties. Eur J Org Chem 2017;2017:3115-33.
Allen J, Robinson RJ. CCXC. An accessible derivative of chromonol. J Chem Soc Trans 1924;125:2192.
Dyke SF, Ollis WD, Sainsbury MJ. ???. Org Chem 1961;26:2453.
Thornton MT. Synthesis of Flavonoids and Flavonoid-based Designed Multiple Ligands for Hypertension (Doctoral Dissertation, Deakin University); 2013.
Hawaiz FE. Synthesis, characterization and antimicrobial activity of some new azo flavones and azo flavanone derived from o-hydroxyacetophenone. ZANCO J Pure Appl Sci 2016;28:140-7.
Burak M, Imen Y. Flavonoids and their antioxidant properties. Turk Klin Tip Bil Derg 1999;19:296-304.
Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez- Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem 2009;113:859-71.
Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, et al. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res 2009;1250:164-74.
Metodiewa D, Kochman A, Karolczak S. Evidence for antiradical and antioxidant properties of four biologically active N, N‐Diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. IUBMB Life 1997;41:1067-75.
Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod 1988;51:345-8.
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 2000;6:909-19.
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002;96:67-202.
Dewick PM. Front Matter and Index. Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. Chichester, UK: John Wiley and Sons, Ltd.; 2001.
Dixon RA, Pasinetti GM. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol 2010;154:453-7.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013;2013:162750.
Panche A, Chandra S, Diwan AD, Harke S. Alzheimer’s and current therapeutics: A review. Asian J Pharm Clin Res 2015;8:14-9.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Apeksha Motghare, Parimal Katolkar
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.