DESCRIBING THE EFFECTS OF PRIMARY OPEN ANGLE GLAUCOMA ON MACULA USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN CENTRAL INDIA

Authors

  • ANJALI VIRANI Department of Ophthalmology, Bundelkhand Medical College, Sagar, Madhya Pradesh, India.
  • SHASHI JAIN Department of Ophthalmology, Shyam Shah Medical College, Rewa, Madhya Pradesh, India.
  • ANAMIKA TIWARI Department of Ophthalmology, Shyam Shah Medical College, Rewa, Madhya Pradesh, India.
  • PUJA SINGH Department of Pathology, Bundelkhand Medical College, Sagar, Madhya Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i12.46940

Keywords:

Primary open angle glaucoma, Spectral domain optical coherence tomography, Macula, Ganglion cell-inner plexiform layer

Abstract

Introduction: Primary open-angle glaucoma is a silent predator of sight, killing retinal ganglion cells (RGCs), and leads to characteristic optic nerve head (ONH) changes and visual field (VF) defects. The conventional methods of diagnosis include clinical examination and perimetry. However, by these at the time of diagnosis, a substantial loss of RGCs has already occurred. Spectral domain optical coherence tomography (SD-OCT) allows quantitative measurements of various parameters of the retina. This tool may be utilized for selective measurement of macular parameters to make an early diagnosis of primary open angle glaucoma (POAG).

Methods: In 6 months of study, a total of 81 eyes of 51 subjects underwent SD-OCT measurements, that is, 49 eyes of 35 POAG subjects and 32 eyes of 16 age-matched healthy subjects, to record all measurable macular parameters, namely, macular thickness (MT)-central, average, in all sectors of the inner and outer circle of early treatment of diabetic retinopathy study (ETDRS) macular map; macular volume, ganglion cell-inner plexiform layer (GC-IPL) thickness-in all sectors; succeeded by statistical calculations using the unpaired t-test to calculate two-tailed p-value which is significant when its value is <0.05.

Results: As an observation the average MT, MT in the inferior and temporal sector of the inner circle of the ETDRS macular map, that in the inferior sector of the outer circle, minimum GC-IPL thickness, and GC-IPL thickness in all sectors were all significantly reduced in POAG eyes than healthy eyes. Whereas central MT, average GC-IPL thickness, macular volume, and MT in few sectors of the inner and outer circle of the ETDRS macular map proved to bear an insignificant change of POAG.

Conclusion: In this study, the greatest impact of POAG on macula was discovered in the GC-IPL layer and MT in the inferior sector of inner and outer ring which might serve the purpose of diagnosis of POAG apart from the established parameters of RNFL and ONH.

Downloads

Download data is not yet available.

References

Yanoff M, Duker JS. Ophthalmology Textbook. Section 12 Glaucoma. 3rd ed. St Louis: Mosby, Elsevier Inc.; 2004. p. 1413-70.

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014;121:2081-90. DOI: 10.1016/j.ophtha.2014.05.013

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-7. DOI: 10.1136/bjo.2005.081224

Available from: https://www.nhp.gov.in [Last accessed on 2019 Apr 01].

Varma R, Ying-Lai M, Francis BA, Bao-Thu Nguyen B, Deneen J,Wilson MR, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: The Los Angeles Latino eye study. Ophthalmology 2004;111:1439-48. DOI: 10.1016/j.ophtha.2004.01.025

King AJ, Stead RE, Rotchford AP. Treating patients presenting with advanced glaucoma-should we reconsider current practice? Br J Ophthalmol 2011;95:1185-92. DOI: 10.1136/bjo.2010.188128

Leighton P, Lonsdale A, Tildsley J, King A. The willingness of patients presenting with advanced glaucoma to participate in a trial comparing primary medical vs primary surgical treatment. Eye (Lond) 2012;26:300-6. DOI: 10.1038/eye.2011.279

Quigley HA. Glaucoma. Lancet 2011;377:1367-77.

Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982;100:135-46. DOI: 10.1001/ archopht.1982.01030030137016

Tan O, Li G, Lu AT, Varma R, Huang D. Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 2008;115:949-56. DOI: 10.1016/j.ophtha.2007.08.011

Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourierdomain optical coherence tomography. Ophthalmology 2009;116:2305-14. e1-2. DOI: 10.1016/j.ophtha.2009.05.025

Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991;254:1178-81. DOI: 10.1126/science.1957169

Boling W, WuDunn D, Cantor LB, Hoop J, James M, Nukala V. Correlation between macular thickness and glaucomatous visual fields. J Glaucoma 2012;21:505-9.

Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma 2015;24:55- 63.DOI: 10.1097/IJG.0b013e31829521db

Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci 2015;56:4857-64. DOI: 10.1167/ iovs.14-16350

Ng DS, Gupta P, Tham YC, Peck CF, Wong TY, Ikram MK, et al. Repeatability of perimacular ganglion cell complex analysis with spectral-domain optical coherence tomography. J Ophthalmol 2015;2015:605940. DOI: 10.1155/2015/605940

Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 1998;105:224-31. DOI: 10.1016/s0161-6420(98)92743-9

Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 2007;51:197-203. DOI: 10.1007/s10384-006-0433-y

Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A,Mancini R, et.al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003;110:177-89. DOI: 10.1016/s0161- 6420(02)01564-6

Giovannini A, Amato G, Mariotti C. The macular thickness and volume in glaucoma: An analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 2002;80:34-6. DOI: 10.1034/j.1600- 0420.80.s236.44.x

Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology 2010;114:2238-43. DOI: 10.1016/j.ophtha.2007.03.005

Sharma A, Agarwal P, Sathyan P, Saini VK. Macular thickness variability in primary open angle glaucoma patients using optical coherence tomography. J Curr Glaucoma Pract 2014;8:10. DOI: 10.5005/jp-journals-10008-1154

Khanal S, Davey PG, Racette L, Thapa M. Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open‐angle glaucoma and normal‐tension glaucoma using optical coherence tomography. Clin Exp Optom 2016;99:373-81. DOI: 10.1111/ cxo.12366

Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol 2003;135:838-43. DOI: 10.1016/s0002-9394(02)02277-8

Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 2011;20:252-9. DOI: 10.1097/ IJG.0b013e3181e079ed

Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:1412-21. DOI: 10.1167/iovs.10-5572

Lee JW, Morales E, Sharifipour F, Amini N, Yu F, Afifi AA, et.al. The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma. Br J Ophthalmol 2017;101:1052-8. DOI: 10.1136/bjophthalmol-2016-309208

Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, et.al. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am J Ophthalmol 2017;184:63-74. DOI: 10.1016/j.ajo.2017.09.020

Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 2007;51:197-203. DOI: 10.1007/s10384-006-0433-y

Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et.al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003;110:177-89. DOI: 10.1016/s0161- 6420(02)01564-6

Published

07-12-2022

How to Cite

VIRANI, A., S. JAIN, A. TIWARI, and P. SINGH. “DESCRIBING THE EFFECTS OF PRIMARY OPEN ANGLE GLAUCOMA ON MACULA USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN CENTRAL INDIA”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 12, Dec. 2022, pp. 171-5, doi:10.22159/ajpcr.2022.v15i12.46940.

Issue

Section

Original Article(s)