IODINE AS A POTENTIAL FRONT-LINE DEFENSE AGAINST COVID-19: A LITERATURE REVIEW

Authors

  • Aneek Das Bhowmik Clinical Services (NGS), AIC-CCMB, CCMB Annexe-II, Hyderabad, Telangana India.
  • Narayan Das Bhowmik Department of Animal Husbandry, Government of West Bengal, West Bengal, India.
  • Oindrila Baisya Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, West Bengal, India.

DOI:

https://doi.org/10.22159/ajpcr.2023.v16i7.47522

Keywords:

COVID-19, SARS-CoV-2, Iodine, Povidone-Iodine, Iodine-V, Iodine complex

Abstract

The novel coronavirus disease, first identified in 2019 known as COVID-19, is caused by a new strain of severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1), named SARS-CoV-2. Recent studies showed that the virus may be airborne and spreads through small respiratory droplets of saliva in aerosols, indirect or direct physical contact with the affected individual, in a similar way to the cold and influenza. Emerging studies also demonstrate the importance of the throat along with salivary glands as sites of viral replication and transmission in early COVID-19 infection. The most common route of entry of SARS-CoV-2 is the upper respiratory tract (nasopharynx) that slowly reaches the lower respiratory tract to infect the epithelial cells within the lungs which can cause lung damage and severe respiratory symptoms, if not treated immediately. Averting colonization of the virus in the nasopharynx could be one of the best options to reduce the incidence of severe infection. It has been well-documented that iodine is one of the most effective of all antimicrobials available. Hospitals and medical facilities worldwide use povidone-iodine (PVP-I) as a standard of care in infection control. Several research studies during the ongoing COVID-19 pandemic showed the in vitro and in vivo efficacy of iodine-containing solutions such as PVP-I (Betadine), Iodine-V (Essential Iodine Drops) etc. and other iodine complexes to effectively kill the SARS-CoV-2 virus within few seconds to hours. Few commercially available iodine-containing gargling, mouthwash, and nasal spray solutions have been recommended to use in humans against SARS-CoV-2 infection by experts to prevent viral spread, especially among health workers. The present article aims to summarize these studies and highlights the rationale, safety and recommendations of use of iodine as an effective method to decrease the viral load during the early COVID-19 infection.

Downloads

Download data is not yet available.

Author Biographies

Aneek Das Bhowmik, Clinical Services (NGS), AIC-CCMB, CCMB Annexe-II, Hyderabad, Telangana India.

Senior Analyst, Clinical Services (NGS)

Narayan Das Bhowmik, Department of Animal Husbandry, Government of West Bengal, West Bengal, India.

Department of Animal Husbandry, Govt. of West Bengal

References

Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: Challenges for global health governance. JAMA 2020;323:709-10. doi: 10.1001/jama.2020.1097, PMID 31999307

Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382:1177-9. doi: 10.1056/NEJMc2001737, PMID 32074444

Dietz L, Horve PF, Coil DA, Fretz M, Eisen JA, Van Den Wymelenberg K. 2019 Novel coronavirus (COVID-19) pandemic: Built environment considerations to reduce transmission. mSystems 2020;5:e00245-20. doi: 10.1128/mSystems.00245-20, PMID 32265315

World Health Organization (WHO). Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Geneva, Switzerland: World Health Organization; 2020. Available from: https://www.who.int/ newsroom/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions [Last accessed on 2022 Aug 06].

Centers for Disease Control and Prevention (CDC). How COVID-19 Spreads. Atlanta: Centers for Disease Control and Prevention (US); 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/ science/science-briefs/sars-cov-2-transmission.html?CDC_AA_ refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019- ncov%2Fscience%2Fscience-briefs%2Fscientific-brief-sars-cov-2. html [Last accessed on 2022 Aug 06].

Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci Technol 2020;2020:1-4. doi: 10.1080/02786826.2020.1749229, PMID 32308568

Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int 2020;139:105730. doi: 10.1016/j. envint.2020.105730, PMID 32294574

Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A 2020;117:11875-7. doi: 10.1073/pnas.2006874117, PMID 32404416

Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ Int 2020;141:105794. doi: 10.1016/j. envint.2020.105794, PMID 32416374

Li Y, Qian H, Hang J, Chen X, Cheng P, Ling H, et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build Environ 2021;196:107788. doi: 10.1016/j.buildenv.2021.107788, PMID 33746341

Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020;395:1973-87. doi: 10.1016/ S0140-6736(20)31142-9, PMID 32497510

Seet RC, Quek AM, Ooi DS, Sengupta S, Lakshminarasappa SR, Koo CY, et al. Positive impact of oral hydroxychloroquine and povidone-iodine throat spray for COVID-19 prophylaxis: An open-label randomized trial. Int J Infect Dis 2021;106:314-22. doi: 10.1016/j. ijid.2021.04.035, PMID 33864917

Ather A, Parolia A, Ruparel NB. Efficacy of mouth rinses against SARS-CoV-2: A scoping review. Front Dent Med 2021;2:648547. doi: 10.3389/fdmed.2021.648547

Khalil I, Barma P. Povidone iodine (PVP-I) mouth gargle/nasal spray may be the simplest and cost effective therapeutic antidote for COVID-19 frontier. Arch Community Public Health 2020;6:138-41.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33. doi: 10.1056/NEJMoa2001017, PMID 31978945

Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res 2018;100:163-88. doi: 10.1016/bs.aivir.2018.01.001, PMID 29551135

Santos IA, Grosche VR, Bergamini FR, Sabino-Silva R, Jardim AC. Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Front Microbiol 2020;11:1818. doi: 10.3389/ fmicb.2020.01818, PMID 32903349

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-20. doi: 10.1038/s41586-020-2180-5, PMID 32225176

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.e8. doi: 10.1016/j.cell.2020.02.052, PMID 32142651

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-8. doi: 10.1126/science.abb2762, PMID 32132184

Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020;5:283. doi: 10.1038/s41392-020-00426-x, PMID 33277466

Shilts J, Crozier TW, Greenwood EJ, Lehner PJ, Wright GJ. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 2021;11:413. doi: 10.1038/s41598-020-80464-1, PMID 33432067

Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect 2020;80:554-62. doi: 10.1016/j.jinf.2020.02.026, PMID 32169481

Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN. Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 1994;20:281-4. doi: 10.1006/geno.1994.1166, PMID 8020977

Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020;526:135-40. doi: 10.1016/j. bbrc.2020.03.044, PMID 32199615

Cuervo NZ, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. ELife 2020;9:e61390. doi: 10.7554/eLife.61390, PMID 33164751

Sarma P, Kaur H, Kaur H, Bhattacharyya J, Prajapat M, Shekhar N, et al. Ocular manifestations and tear or conjunctival swab PCR positivity for 2019-nCoV in patients with COVID-19: A systematic review and meta-analysis. Lancet 2020;preprint:1-26. doi: 10.2139/ssrn.3566161

Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duh EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf 2020;18:537-44. doi: 10.1016/j.jtos.2020.06.007, PMID 32544566

Cheema M, Aghazadeh H, Nazarali S, Ting A, Hodges J, McFarlane A, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol 2020;55:e125-9. doi: 10.1016/j.jcjo.2020.03.003, PMID 32284146

Wu P, Duan F, Luo C, Liu Q, Qu X, Liang L, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 2020;138:575-8. doi: 10.1001/jamaophthalmol.2020.1291, PMID 32232433

Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020;28:391-5. doi: 10.1080/09273948.2020.1738501, PMID 32175797

Sun Y, Liu L, Pan X, Jing M. Mechanism of the action between the SARS-CoV S240 protein and the ACE2 receptor in eyes. Int J Ophthalmol 2006;6:783-6.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5, PMID 31986264

Krajewska J, Krajewski W, Zub K, Zatoński T. COVID-19 in otolaryngologist practice: A review of current knowledge. Eur Arch Otorhinolaryngol 2020;277:1885-97. doi: 10.1007/s00405-020- 05968-y, PMID 32306118

Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH 3rd, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 2020;182:429-46.e14. doi: 10.1016/j.cell.2020.05.042, PMID 32526206

Aguiar JA, Tremblay BJ, Mansfield MJ, Woody O, Lobb B, Banerjee A, et al. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020;56:2001123. doi: 10.1183/13993003.01123- 2020, PMID 32675206

Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26:681-7. doi: 10.1038/s41591-020-0868-6, PMID 32327758

Pandya VK, Tiwari RS. Nasal mucociliary clearance in health and disease. Indian J Otolaryngol Head Neck Surg 2006;58:332-4. doi: 10.1007/BF03049581, PMID 23120337

Berkelman RL, Holland BW, Anderson RL. Increased bactericidal activity of dilute preparations of povidone-iodine solutions. J Clin Microbiol 1982;15:635-9. doi: 10.1128/jcm.15.4.635-639.1982, PMID 7040461

Moskowitz H, Mendenhall M. Comparative analysis of antiviral efficacy of four different mouthwashes against severe acute respiratory syndrome coronavirus 2: An in vitro study. Int J Exp Dent Sci 2020;9:1-3. doi: 10.5005/jp-journals-10029-1209

Arefin MK. Povidone iodine (PVP-I) oro-nasal spray: An effective shield for COVID-19 Protection for health care worker (HCW), for all. Indian J Otolaryngol Head Neck Surg 2021;74:1-6.

Eggers M, Eickmann M, Zorn J. Rapid and effective virucidal activity of povidone-iodine products against Middle East respiratory syndrome coronavirus (MERS-CoV) and modified vaccinia virus Ankara (MVA). Infect Dis Ther 2015;4:491-501. doi: 10.1007/s40121-015-0091-9, PMID 26416214

Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther 2018;7:249-59. doi: 10.1007/s40121-018-0200-7, PMID 29633177

Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006;212:119-23. doi: 10.1159/000089211, PMID 16490989

Anderson DE, Sivalingam V, Kang AE, Ananthanarayanan A, Arumugam H, Jenkins TM, et al. Povidone-iodine demonstrates rapid in vitro virucidal activity against SARS-CoV-2, the virus causing COVID-19 disease. Infect Dis Ther 2020;9:669-75. doi: 10.1007/ s40121-020-00316-3, PMID 32643111

Frank S, Brown SM, Capriotti JA, Westover JB, Pelletier JS, Tessema B. In vitro efficacy of a povidone-iodine nasal antiseptic for rapid inactivation of SARS-CoV-2. JAMA Otolaryngol Head Neck Surg 2020;146:1054-8. doi: 10.1001/jamaoto.2020.3053, PMID 32940656

Pelletier JS, Tessema B, Frank S, Westover JB, Brown SM, Capriotti JA. Efficacy of povidone-iodine nasal and oral antiseptic preparations against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Ear Nose Throat J 2021;100:192S-6. doi: 10.1177/0145561320957237, PMID 32951446

Chopra A, Sivaraman K, Radhakrishnan R, Balakrishnan D, Narayana A. Can povidone iodine gargle/mouthrinse inactivate SARS-CoV-2 and decrease the risk of nosocomial and community transmission during the COVID-19 pandemic? An evidence-based update. Jpn Dent Sci Rev 2021;57:39-45. doi: 10.1016/j.jdsr.2021.03.001, PMID 33747261

Naqvi SH, Citardi MJ, Cattano D, Ostrosky-Zeichner L, Knackstedt MI, Karni RJ. Povidone-iodine solution as SARS-CoV-2 prophylaxis for procedures of the upper aerodigestive tract a theoretical framework. J Otolaryngol Head Neck Surg 2020;49:77. doi: 10.1186/s40463-020- 00474-x, PMID 33109269

Hassandarvish P, Tiong V, Mohamed NA, Arumugam H, Ananthanarayanan A, Qasuri M, et al. In vitro virucidal activity of povidone iodine gargle and mouthwash against SARS-CoV-2: Implications for dental practice. Br Dent J 2020;2020:1-4. doi: 10.1038/ s41415-020-2402-0, PMID 33303923

O’Brien TP, Pelletier J. Topical ocular povidone-iodine as an adjunctive preventative practice in the era of COVID-19. Asia Pac J Ophthalmol (Phila) 2021;10:142-5. doi: 10.1097/APO.0000000000000353, PMID 33793439

Teagle V, Clem DS, Yoon T. Virucidal properties of molecular iodine oral rinse against SARS-CoV-2. Compend Contin Educ Dent 2022;43:e13-6. PMID 35148480

Lamas LM, Dios PD, Rodríguez MT, Del Campo Pérez V, Alvargonzalez JJ, Domínguez AM, et al. Is povidone iodine mouthwash effective against SARS-CoV-2? First in vivo tests. Oral Dis 2022;28:908-11. doi: 10.1111/odi.13526, PMID 32615642

Arefin MK, Rumi SK, Uddin AK, Banu SS, Khan M, Kaiser A, et al. Virucidal effect of povidone iodine on COVID-19 in the nasopharynx: An open-label randomized clinical trial. Indian J Otolaryngol Head Neck Surg 2022;74:2963-7. doi: 10.1007/s12070-021-02616-7, PMID 34026595

Hasan MJ, Rumi SK, Banu SS, Uddin AK, Islam MS, Arefin MK. Virucidal effect of povidone iodine on COVID-19 in the nasopharynx: A structured summary of a study protocol for an open-label randomized clinical trial. Trials 2021;22:2. doi: 10.1186/s13063- 020-04963-2, PMID 33397432

Seneviratne CJ, Balan P, Ko KK, Udawatte NS, Lai D, Ng DH, et al. Efficacy of commercial mouth-rinses on SARS-CoV-2 viral load in saliva: Randomized control trial in Singapore. Infection 2021;49:305-11. doi: 10.1007/s15010-020-01563-9, PMID 33315181

Guenezan J, Garcia M, Strasters D, Jousselin C, Lévêque N, Frasca D, et al. Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID-19: A randomized clinical trial. JAMA Otolaryngol Head Neck Surg 2021;147:400-1. doi: 10.1001/jamaoto.2020.5490, PMID 33538761

Friedland P, Tucker S, Goodall S, Julander J, Mendenhall M, Molloy P, et al. In vivo (human) and in vitro inactivation of SARS-CoV-2 with 0.5% povidone-iodine nasal spray. Aust J Otolaryngol 2022;5:2. doi: 10.21037/ajo-21-40

Cipla Launches Antiviral Nasal Spray to Fight Covid 19, Respiratory Infections; 2021. Available from: https://timesofindia.indiatimes.com/ business/india-business/cipla-launches-anti-viral-nasal-spray-to-fight-covid-19-respiratory-infections/articleshow/87274280.cms

Sriwilaijaroen N, Wilairat P, Hiramatsu H, Takahashi T, Suzuki T, Ito M, et al. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: Its effects on hemagglutination and sialidase activities. Virol J 2009;6:124. doi: 10.1186/1743-422X-6- 124, PMID 19678928

Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; coronavirus Disease-19). Clin Exp Pediatr 2020;63:119-24. doi: 10.3345/ cep.2020.00493, PMID 32252141

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-92.e6. doi: 10.1016/j.cell.2020.02.058

Bigliardi PL, Alsagoff SA, El-Kafrawi HY, Pyon JK, Wa CT, Villa MA. Povidone iodine in wound healing: A review of current concepts and practices. Int J Surg 2017;44:260-8. doi: 10.1016/j.ijsu.2017.06.073, PMID 28648795

Freeman C, Duan E, Kessler J. Molecular iodine is not responsible for cytotoxicity in iodophors. J Hosp Infect 2022;122:194-202. doi: 10.1016/j.jhin.2022.01.015, PMID 35124143

Reyazulla MA, Gopinath AL, Vaibhav N, Raut RP. An unusual complication of late onset allergic contact dermatitis to povidone iodine in oral & maxillofacial surgery - a report of 2 cases. Eur Ann Allergy Clin Immunol 2014;46:157-9. PMID 25053635

Cruz FD, Brown DH, Leikin JB, Franklin C, Hryhorczuk DO. Iodine absorption after topical administration. West J Med 1987;146:43-5. PMID 3825108

Ramezanpour M, Smith JL, Psaltis AJ, Wormald PJ, Vreugde S. In vitro safety evaluation of a povidone-iodine solution applied to human nasal epithelial cells. Int Forum Allergy Rhinol 2020;10:1141-8. doi: 10.1002/alr.22575, PMID 32250552

Shiraishi T, Nakagawa Y. Evaluation of the bactericidal activity of povidone-iodine and commercially available gargle preparations. Dermatology 2002;204:37-41. doi: 10.1159/000057723, PMID 12011519

Ader AW, Paul TL, Reinhardt W, Safran M, Pino S, McArthur W, et al. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J Clin Endocrinol Metab 1988;66:632-5. doi: 10.1210/jcem-66-3-632, PMID 3350910

Ferguson MM, Geddes DA, Wray D. The effect of a povidone-iodine mouthwash upon thyroid function and plaque accumulation. Br Dent J 1978;144:14-6. doi: 10.1038/sj.bdj.4804017, PMID 272178

Müller G, Kramer A. Comparative study of in vitro cytotoxicity of povidone-iodine in solution, in ointment or in a liposomal formulation (Repithel) and selected antiseptics. Dermatology 2006;212:91-3. doi: 10.1159/000090102, PMID 16490982

Amin MS, Harrison RL, Benton TS, Roberts M, Weinstein P. Effect of povidone-iodine on Streptococcus mutans in children with extensive dental caries. Pediatr Dent 2004;26:5-10. PMID 15080351

Kirk-Bayley J, Sunkaraneni V, Challacombe S. The use of povidone iodine nasal spray and mouthwash during the current COVID-19 pandemic may reduce cross infection and protect healthcare workers. SSRN Electron J 2020;preprint:1-7. doi: 10.2139/ssrn.3563092

Pattanshetty S, Narayana A, Radhakrishnan R. Povidone-iodine gargle as a prophylactic intervention to interrupt the transmission of SARS-CoV-2. Oral Dis 2021;27:752-3. doi: 10.1111/odi.13378, PMID 32352615

Sarma P, Kaur H, Medhi B, Bhattacharyya A. Possible prophylactic or preventive role of topical povidone iodine during accidental ocular exposure to 2019-nCoV. Graefes Arch Clin Exp Ophthalmol 2020;258:2563-5. doi: 10.1007/s00417-020-04752-2, PMID 32436084

Pepose JS, Ahuja A, Liu W, Narvekar A, Haque R. Randomized, controlled, Phase 2 trial of povidone-iodine/Dexamethasone Ophthalmic suspension for treatment of adenoviral conjunctivitis. Am J Ophthalmol 2018;194:7-15. doi: 10.1016/j.ajo.2018.05.012

Waikar S, Oli A. COVID-19: Ophthalmic prophylactic and therapeutic measures. Indian J Ophthalmol 2020;68:1223-4. doi: 10.4103/ijo. IJO_883_20, PMID 32461492

Romanowski EG, Yates KA, Shanks RM, Kowalski RP. Is benzalkonium chloride (BAK) an effective antiviral against adenovirus? Invest Ophthalmol Vis Sci 2016;57:2337.

Jupiter Pharmaceuticals Limited, Glycoseptol. Available from: http:// jupiterpharma.in/content.php?med_id=3

Popkin DL, Zilka S, Dimaano M, Fujioka H, Rackley C, Salata R, et al. Cetylpyridinium chloride (CPC) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog Immun 2017;2:252-69. doi: 10.20411/pai.v2i2.200, PMID 28936484

Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA, et al. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis 2017;17:74. doi: 10.1186/s12879-016-2177-8, PMID 28088167

Baqui AA, Kelley JI, Jabra-Rizk MA, Depaola LG, Falkler WA, Meiller TF. In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus Type 1. J Clin Periodontol 2001;28:610- 6. doi: 10.1034/j.1600-051x.2001.028007610.x, PMID 11422581

Baker N, Williams AJ, Tropsha A, Ekins S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm Res 2020;37:104. doi: 10.1007/s11095-020-02842-8, PMID 32451736

O’Donnell VB, Thomas D, Stanton R, Maillard JY, Murphy RC, Jones SA, et al. Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function (Oxf) 2020;1:zqaa002. doi: 10.1093/function/zqaa002, PMID 33215159

Carrouel F, Gonçalves LS, Conte MP, Campus G, Fisher J, Fraticelli L, et al. Antiviral activity of reagents in mouth rinses against SARS-CoV-2. J Dent Res 2021;100:124-32. doi: 10.1177/0022034520967933, PMID 33089717

Pérez-Errázuriz S, Velasco-Ortega E, Jiménez-Guerra Á, Aguilera- Navarro E. Cetylpyridinium chloride as a tool against COVID-19. Int J Odontostomatol 2021;15:27-30. doi: 10.4067/S0718- 381X2021000100027

Vilchez-Chavez A, Carruitero MJ, Chavez-Cruzado E. Cetylpyridinium chloride mouthwashes: Potential role in COVID-19 control. J Oral Maxillofac Surg Med Pathol 2022;34:213. doi: 10.1016/j. ajoms.2021.09.007, PMID 34631403

Bañó-Polo M, Martínez-Gil L, Del Pino MM, Massoli A, Mingarro I, Léon R, et al. Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. J Oral Microbiol 2022;14:2030094. doi: 10.1080/20002297.2022.2030094, PMID 35087641

Eduardo FP, Corrêa L, Heller D, Daep CA, Benitez C, Malheiros Z, et al. Salivary SARS-CoV-2 load reduction with mouthwash use: A randomized pilot clinical trial. Heliyon 2021;7:e07346. doi: 10.1016/j. heliyon.2021.e07346, PMID 34189331

Kolsky RE, Moskowitz H, Kesslar J. Stable Compositions of Uncomplexed Iodine and Methods of use. U.S. Patient Application 20170208814A1; 2017.

Moskowitz H, Goodman J. Molecular Iodine: Could this be a Game Changer for Dentistry?; 2020. Available from: https://www. oralhealthgroup.com/features/molecular-iodine-could-this-be-a-game-changer-for-dentistry

Virucidal Assay. Utah State University Institute for Antiviral Research; 2020. Available from: https://caas.usu.edu/iar

Trettenero DS. Molecular Iodine as a New Frontline Defense Against COVID-19 in the Dental Office; 2020. Available from: https://www. dentistryiq.com/dentistry/article/14187476/molecular-iodine-as-a-new-frontline-defense-against-covid19-in-the-dental-office

Köntös Z. Efficacy of “essential iodine drops” against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). PLoS One 2021;16:e0254341. doi: 10.1371/journal.pone.0254341, PMID 34242340

Michavila-Gomez AV, Moreno-Palanques MA, Ferrer-Vazquez M, Ferriols-Leisart R, Bartolomé B. Anaphylactic reaction to povidone secondary to drug ingestion in a young child. Allergol Immunopathol (Madr) 2012;40:259-61. doi: 10.1016/j.aller.2011.06.005, PMID 21996435

Boretti A, Banik BK. Potential effects of iodine supplementation on inflammatory processes and toxin removal following COVID-19 vaccination. Biol Trace Elem Res 2022;200:3941-4. doi: 10.1007/ s12011-021-02996-5, PMID 34709555

Mantlo E, Evans A, Patterson-Fortin L, Boutros J, Smith R, Paessler S. Efficacy of a novel iodine complex solution, CupriDyne, in inactivating SARS-CoV-2. bioRxiv 2020;preprint:1-7. doi: 10.1101/2020.05.08.082701, PMID 32511363.

Altaf I, Nadeem MF, Hussain N, Nawaz M, Raza S, Shabbir MA, et al. An in vitro antiviral activity of iodine complexes against SARS-CoV-2. Arch Microbiol 2021;203:4743-9. doi: 10.1007/s00203-021-02430-3, PMID 34136927

Nawaz M, Ali MA, Ashraf MA, Shabbir MZ, Shabbir MA, Altaf I, et al. An assessment of efficacy of iodine complex (Renessans) against SARS-CoV-2 in nonhuman primates (rhesus macaque). bioRxiv 2020;preprint:1-12. doi: 10.1101/2020.11.17.377432

Ashraf S, Ashraf S, Ashraf M, Imran MA, Kalsoom L, Siddiqui UN, et al. A quadruple blinded placebo controlled randomised trial to evaluate the effectiveness of an iodine complex for patients with mild to moderate COVID-19 in Pakistan (I-COVID-PK): A structured summary of a study protocol for a randomised controlled trial. Trials 2021;22:127. doi: 10.1186/s13063-021-05081-3, PMID 33568226

Ashraf S, Ashraf S, Ashraf M, Farooq I, Akmal R, Imran MA, et al. Clinical efficacy of iodine complex in SARS-CoV-2-infected patients with mild to moderate symptoms: Study protocol for a randomized controlled trial. Trials 2022;23:58. doi: 10.1186/s13063-021-05848-8, PMID 35045888

Hoang BX, Hoang HQ, Han B. Zinc iodide in combination with dimethyl sulfoxide for treatment of SARS-CoV-2 and other viral infections. Med Hypotheses 2020;143:109866. doi: 10.1016/j. mehy.2020.109866, PMID 32473509

Mantlo E, Rhodes T, Boutros J, Patterson-Fortin L, Evans A, Paessler S. In vitro efficacy of a copper iodine complex PPE disinfectant for SARS-CoV-2 inactivation. F1000Res 2020;9:674. doi: 10.12688/ f1000research.24651.2, PMID 33123349

FDA Submission Data. Vol. 510(k) Premarket Notification. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn. cfm?ID=K181428

Callaway E. COVID vaccine boosters: The most important questions. Nature 2021;596:178-80. doi: 10.1038/d41586-021-02158-6, PMID 34354274

Mizrahi B, Lotan R, Kalkstein N, Peretz A, Perez G, Ben-Tov A, et al. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat Commun 2021;12:6379. doi: 10.1038/s41467-021- 26672-3, PMID 34737312

Mallapaty S. COVID vaccines slash viral spread - but Delta is an unknown. Nature 2021;596:17-8. doi: 10.1038/d41586-021-02054-z, PMID 34321643

Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 2022;10:1-11. doi: 10.12998/wjcc.v10. i1.1, PMID 35071500

Verheesen RH, Traksel RA. Iodine, a preventive and curative agent in the COVID-19 pandemic? Med Hypotheses 2020;144:109860. doi: 10.1016/j.mehy.2020.109860, PMID 32540604

Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit 2020;26:e924700. doi: 10.12659/MSM.924700, PMID 32366816

Nanomedicine and the COVID-19 vaccines. Nat Nanotechnol 2020;15:963. doi: 10.1038/s41565-020-00820-0, PMID 33247210

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-79. doi: 10.1038/ nrd.2017.243, PMID 29326426

Mei-li G, Lin L, Xin Z, Hong-Mei S, Li-Xiang L, Jun YU, et al. Influence of iodine on mRNA expression of iodide transporter, insulin-like growth factor I and transforming growth factor-beta in thyroid and mammary glands of lactating rats. Chin J Endemiol 2012;31:245-50.

Serrano-Nascimento C, Calil-Silveira J, Goulart-Silva F, Nunes MT. New insights about the posttranscriptional mechanisms triggered by iodide excess on sodium/iodide symporter (NIS) expression in PCCl3 cells. Mol Cell Endocrinol 2012;349:154-61. doi: 10.1016/j. mce.2011.09.036, PMID 22001309

Published

07-07-2023

How to Cite

Das Bhowmik, A., N. Das Bhowmik, and O. Baisya. “IODINE AS A POTENTIAL FRONT-LINE DEFENSE AGAINST COVID-19: A LITERATURE REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 16, no. 7, July 2023, pp. 13-19, doi:10.22159/ajpcr.2023.v16i7.47522.

Issue

Section

Review Article(s)