BIOACTIVE METABOLITE PRODUCTION BY NOCARDIOPSIS SYNNEMATAFORMANSVLS-10 OF MANGROVE ORIGIN

Authors

  • MARY SWAPNA MOGILI Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.
  • MUVVA VIJAYALAKSHMI Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2023.v16i11.48146

Keywords:

Mangrove Actinobacteria, Polyphasic taxonomy, Nutritional parameters, Antagonistic activity, Nocardiopsis synnemataformansVLS-10

Abstract

Objective: Antibiotic resistance of pathogens has become a serious problem all over the world. Therefore, focusing for novel antibiotics is an important endeavor which is very much needed. Around 50 morphologically different Actinobacteria isolated from mangrove habitats of Krishna district, Andhra Pradesh, India were screened for antimicrobial activity.

Methods: Among 50 isolates, one strain Nocardiopsis synnemataformans VLS-10 was identified based on morphological, physiological, biochemical, and molecular approaches. The effect of environmental parameters such as incubation period, pH, temperature and salt concentration, and effect of various nutrients such as carbon and nitrogen sources and minerals on the bioactive metabolite production by N. synnemataformans VLS-10 was evaluated by employing agar well diffusion assay.

Results: Among the 50 isolates, one strain designated as VLS-10 was efficient to produce potential secondary metabolites. It was identified as N. synnemataformans based on polyphasic taxonomy. The present work is mainly aimed to study process optimization parameters to get high yield of bioactive compounds. ISP-2 medium supplemented with sodium chloride @ 9% maintained at pH 7.0 supported maximum yield of secondary metabolites by the strain when incubated at 35°C for 9 days.

Conclusion: Secondary metabolites possessed broad-spectrum activity against human pathogenic bacteria and fungi. Hence, strain N. synnemataformansVLS-10 becomes a significant source for antimicrobial compounds.

Downloads

Download data is not yet available.

References

Ganesan A. The impact of natural products upon drug discovery. Curr Opin Chem Biol 2008;12:306-317

Baltz RH. Antimicrobials from actinomycetes. Back to the future. Microbe 2007;2:125-31.

Jiang Y, Xu P, Lou K, Xu LH, Liu ZH. Problems and countermeasure on development of pharmaceuticals from Actinobacteria resource. Microbiology 2008;35:272-4.

Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol Fertil Soils 2001;33:265-78. doi: 10.1007/s003740000319

Lageiro MM, Moura MJ, Reis A, Costa-Ferreira MJ. Microbial proteases application in leather industry. J Biotechnol 2007;131:S239- 40. doi: 10.1016/j.jbiotec.2007.07.717

Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP. Actinobacteria for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 2009;7:24-44.

Naine J, Srinivasan MV, Devi SC. Novel anticancer compounds from marine actinomycetes: A review. J Pharm Res 2011;4:1285-7.

Raja A, Prabakarana P. Actinomycetes and drug-an overview. Sci Alert 2011;1:72-84.

Baltz RH. Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes. SIM News 2006;56:148-60.

Lam KS. Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 2006;9:245-51. doi: 10.1016/j.mib.2006.03.004, PMID 16675289

Meyer J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 1976;26:487-93. doi: 10.1099/00207713-26-4-487

Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: Proposal of Nocardiopsaceae fam. nov. Int J Syst Evol Microbiol 1996;46:1088-92. doi: 10.1099/00207713- 46-4-1088

Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res 2015;174:33-47. doi: 10.1016/j.micres.2015.03.010, PMID 25946327

Raju R, Piggott AM, Quezada M, Capon RJ. Nocardiopsins C and D and nocardiopyrone A: Newpolyketides from an Australian marine-derived Nocardiopsis sp. Tetrahedron 2013;69:692-8.

Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ. Actinomycete metabolome induction/suppression with N-Acetylglucosamine. J Nat Prod 2017;80:828-36. doi: 10.1021/acs. jnatprod.6b00673, PMID 28355070

Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, et al. Production of a new thiopeptide antibiotic, TP- 1161, by a marine Nocardiopsis species. Appl Environ Microbiol 2010;76:4969-76. doi: 10.1128/AEM.00741-10, PMID 20562278

Shin J, Seo Y, Lee HS, Rho JR, Mo SJ. A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis. J Nat Prod 2003;66:883-4. doi: 10.1021/np030075r, PMID 12828484

Raju R, Piggott AM, Conte M, Tnimov Z, Alexandrov K, Capon RJ. Nocardiopsins: New FKBP12-binding macrolide polyketides from an Australian marine-derived actinomycete, Nocardiopsis sp. Chemistry 2010;16:3194-200. doi: 10.1002/chem.200902933, PMID 20112311

Raju R, Piggott AM, Huang XC, Capon RJ. Nocardioazines: A novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein. Org Lett 2011;13:2770-3. doi: 10.1021/ ol200904v, PMID 21513295

Fu P, Liu P, Qu H, Wang Y, Chen D, Wang H, et al. Α-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J Nat Prod 2011;74:2219-23. doi: 10.1021/np200597m, PMID 21958359

Kim Y, Ogura H, Akasaka K, Oikawa T, Matsuura N, Imada C, et al. Nocapyrones: And pyrones from a marine-derived Nocardiopsis sp. Mar Drugs 2014;12:4110-25. doi: 10.3390/md12074110, PMID 25007160

Kim MC, Kwon OW, Park JS, Kim SY, Kwon HC. Nocapyrones H-J, 3, 6-disubstituted pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem Pharm Bull (Tokyo) 2013;61:511-5. doi: 10.1248/ cpb.c12-00956, PMID 23386029

Tian S, Yang Y, Liu K, Xiong Z, Xu L, Zhao L. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Nat Prod Res 2014;28:344-6. doi: 10.1080/14786419.2013.858341, PMID 24236566

Ding ZG, Zhao JY, Li MG, Huang R, Li QM, Cui XL, et al. spironaphthoquinones from a tin mine tailings-derived alkalophilic Nocardiopsis species. J Nat Prod 2012;75:1994-8.

Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, et al. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 2012;167:616-22. doi: 10.1016/j.micres.2012.02.008, PMID 22494896

Lu CH, Li YY, Wang HX, Wang BM, Shen YM. A new phenoxazine derivative isolated from marine sediment actinomycetes, Nocardiopsis sp. 236. Drug Discov Ther 2013;7:101-4. PMID 23917857

Tian SZ, Pu X, Luo G, Zhao LX, Xu LH, Li WJ, et al. Isolation and characterization of new p-Terphenyls with antifungal, antibacterial and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J Agric Food Chem 2013;61:3006-12. doi: 10.1021/ jf400718w, PMID 23441911

He J, Roemer E, Lange C, Huang X, Maier A, Kelter G, et al. Structure, derivatization, and antitumor activity of new griseusins from Nocardiopsis sp. J Med Chem 2007;50:5168-75. doi: 10.1021/ jm070170n, PMID 17877337

Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W. Lucentamycins AD. cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 2007;70:1321-8. doi: 10.1021/np070101b, PMID 17630797

Kase H, Iwahashi K, Matsuda YK. K-252a, A potent inhibitor of protein kinase C from microbial origin. J Antibiot (Tokyo) 1986;39:1059-65. doi: 10.7164/antibiotics.39.1059, PMID 3759657

Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 2012;285:198-204. doi: 10.1016/j. desal.2011.10.002

El-Nakeeb MA, Lechevalier HA. Selective isolation of aerobic actinomycetes. Appl Microbiol 1963;11:75-7. doi: 10.1128/am.11.2.75- 77.1963, PMID 13937509

Valli S, Suvathi SS, Aysha OS, Nirmala P, Vinoth KP, Reena A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed 2012;2:469-73. doi: 10.1016/ S2221-1691(12)60078-1, PMID 23569952

Chaudhary HS, Yadav J, Shrivastava AR, Singh S, Singh AK, Gopalan N. Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (A city of central India). J Adv Pharm Technol Res 2013;4:118-23. doi: 10.4103/2231-4040.111528, PMID 23833752

Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 1966;16:313-40. doi: 10.1099/00207713-16-3-313

Jose PA, Jebakumar SR. Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aquat Biosyst 2012;8:23. doi: 10.1186/2046-9063-8-23, PMID 22950748

Boughachiche F, Reghioua S, Oulmi L, Zerizer H, Kitouni M, Boudemagh A. Isolation of actinomycetales producing antimicrobial substances from the Sebkha Ain Mlila. Sci Technol 2005;23:5-10.

Bizuye A, Moges F, Andualem B. Isolation and screening of antibiotic producing actinomycetes from soils in Gondar town, North West Ethiopia. Asian Pac J Trop Dis 2013;3:375-81. doi: 10.1016/S2222- 1808(13)60087-0

Nonomura H, Ohara Y. Distribution of actinomycetes in soil. XI. Some new species of the genus Actinomadura, Lechevalier. J Ferment Technol 1971;49:904-12.

Das S, Lyla PS, Khan SA. Characterization and identification of marine actinomycetes existing systems, complexities and future directions. Natl Acad Sci Lett 2008;31:149-60.

Pridham TG, Gottlieb D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol 1948;56:107-14. doi: 10.1128/jb.56.1.107-114.1948, PMID 16561537

Kavitha A, Vijayalakshmi M, Sudhakar P, Narasimha G. Screening of actinomycete strains for the production of antifungal metabolites. Afr J Microbiol Res 2010;4:27-32.

Gordon RE. Some criteria for the recognition of Nocardia madurae (Vincent) Blanchard. J Gen Microbiol 1966;45:355-64. doi: 10.1099/00221287-45-2-355, PMID 5969755

Cowan ST. Cowan, Steel’s, Manual for the Identification of Medical Bacteria. 2nd ed. Cambridge: University Press; 1974.

Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual. Harlow: Benjamin; 2002.

Oskay M. Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp. KGG32. Int J Agric Biol 2011;13:7-24.

Ripa FA, Nikkon F, Zaman S, Khondkar P. Optimal conditions for antimicrobial metabolites production from a new Streptomyces sp. RUPA-08PR isolated from Bangladeshi soil. Mycobiology 2009;37:211-4. doi: 10.4489/MYCO.2009.37.3.211, PMID 23983535

Kathiresan K, Balagurunathan R, Selvam MM. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian J Biotechnol 2005;4:271-6.

Goodfellow M, Orchard VA. Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 1974;83:375-87. doi: 10.1099/00221287-83-2-375, PMID 4610085

Kampfer P, Kroppenstedt RM, Dott W. A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J Gen Microbiol 1991;137:1831-91. doi: 10.1099/00221287-137-8-1831

Hasegawa T, Yamano T, Yoneda M. Streptomyces inusitatus sp. nov. Int J Syst Bacteriol 1978;28:407-10. doi: 10.1099/00207713-28-3-407

Kim BS, Sahin N, Minnikin DE, Screwinska JZ, Mordarski M, Goodfellow M. Classification of thermophilic streptomycetes including the description of Streptomyces thermoalcalitolerance sp. nov. Int J Syst Evol Microbiol 1999;49:7-17.

Shimizu M, Nakagawa Y, Sato Y, Furumai T, Igarashi Y, Onaka H, et al. Studies on endophytic actinomycetes (1) Streptomycetes sp. Isolated from rhododendron and its antimicrobial activity. J Gen Plant Pathol 2000;66:360-6. doi: 10.1007/PL00012978

Tresner HD, Hayes JA, Backus EJ. Differential tolerance of Streptomycetes to sodium chloride as a taxonomic aid. Appl Microbiol 1968;16:1134-6. doi: 10.1128/am.16.8.1134-1136.1968, PMID 5675504

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;24:189-204.

Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000;17:1251-8. doi: 10.1093/oxfordjournals. molbev.a026408, PMID 10908645

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9. doi: 10.1093/molbev/msr121, PMID 21546353

Ushakiranmayi M, Vijayalakshmi M. Optimization of culture conditions by response surface methodology and unstructured kinetic modeling for bioactive metabolite production by Nocardiopsis litoralis VSM-8. 3 Biotech 2016;6:210.

Swapna MM, Vijayalakshmi M. Selective isolation and characterization of Nocardiopsis flavescensVJMS-18 from coastal regions of Andhra Pradesh, India. Int J Pharm Sci Res 2019;10:3800-7.

Prasadarao N, Vijayalakshmi M. Exploration of potent actinobacterium Nocardiopsis halotoleransVJPR-2 isolated from mangrove habitats. Asian J Pharm Clin Res 2016;9:4.

Saba Y, Vijayalakshmi M, Kumar R M. Taxonomic characterization of rare Actinobacteria isolated from mangrove ecosystem. Int J Curr Res 2016;8:31060-6.

Swapna MM, Vijayalakshmi M. Antimicrobial potential of Streptomyces albogriseolousVJMS-7 isolated from coastal regions of Guntur district, Andhra Pradesh, India. Asian J Microbiol Biotechnol Environ Sci 2019;21:688-94.

Swapna MM, Vijayalakshmi M. Isolation, identification and antimicrobial potential of marine Streptomyces spp from coastal regions of Andhra Pradesh, India. Int J Pharm Biol Sci 2018;8:1136-45.

Hamedi J, Mohammadipanah F, Pötter G, Spröer C, Schumann P, Göker M, et al. Nocardiopsis arvandica sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2011;61:1189-94. doi: 10.1099/ ijs.0.022756-0, PMID 20562242

Hamedi J, Mohammadipanah F, von Jan M, Pötter G, Schumann P, Spröer C, et al. Nocardiopsis sinuspersici sp. nov., isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol 2010;60:2346-52. doi: 10.1099/ijs.0.018366-0, PMID 19933587

Schippers A, Bosecker K, Willscher S, Spröer C, Schumann P, Kroppenstedt RM. Nocardiopsis metallicus sp. nov., a metal-leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol 2002;52:2291-5. doi: 10.1099/00207713-52-6-2291, PMID 12508899

Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y. Amino acid compositions and partial sequences of two types of alkaline serine proteases from Nocardiopsis dassonvillei subsp. Prasina OPC-210. Agric Biol Chem 1990;54:2177-9, PMID 1368615

Hussein EI, Jacob JH, Shakhatreh MA, Al-Razaq MA, Juhmani AF, Cornelison CT. Detection of antibiotic-producing Actinobacteria in the sediment and water of Main thermal springs (Jordan). GERMS 2018;8:191-8. doi: 10.18683/germs.2018.1146, PMID 30775338

Bouras N, Meklat A, Zitouni A, Mathieu F, Schumann P, Sproer C. Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil. Antonie Leeuwenhoek 2015;8:313-20.

Al-Zarban SS, Abbas I, Al-Musallam AA, Steiner U, Stackebrandt E, Kroppenstedt RM. Nocardiopsis halotolerans sp. nov., isolated from salt marsh soil in Kuwait. Int J Syst Evol Microbiol 2002;52:525-9. doi: 10.1099/00207713-52-2-525, PMID 11931165

Yamamura H, Ohkubo SY, Ishida Y, Otoguro M, Tamura T, Hayakawa M. Nocardiopsis nikkonensis sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2010;60:2967-71. doi: 10.1099/ijs.0.016956-0, PMID 20118291

Li MG, Li WJ, Xu P, Cui XL, Xu LH, Jiang CL. Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. Int J Syst Evol Microbiol 2003;53:317-21. doi: 10.1099/ijs.0.02055-0, PMID 12656190

Francois V, Stephane. Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiology (Reading) 2001;147:2447-59.

Published

07-11-2023

How to Cite

MOGILI, M. S., and MUVVA VIJAYALAKSHMI. “BIOACTIVE METABOLITE PRODUCTION BY NOCARDIOPSIS SYNNEMATAFORMANSVLS-10 OF MANGROVE ORIGIN”. Asian Journal of Pharmaceutical and Clinical Research, vol. 16, no. 11, Nov. 2023, pp. 60-68, doi:10.22159/ajpcr.2023.v16i11.48146.

Issue

Section

Original Article(s)