REVIEW OF PHYTO-MEDICAL EXTRACTS’ AND COMPOUNDS’ ANTI-RADIATION PROPERTIES
DOI:
https://doi.org/10.22159/ajpcr.2024.v17i5.50248Keywords:
Ionizing radiation,, Radioprotective, Phytochemicals, Plants extracts, Radiotherapy,, DNA damageAbstract
Humans are routinely exposed to radiation when receiving cancer treatment, fighting nuclear weapons, exploring space, and flying. Radiation exposure damages biological components such as protein, lipids, and cell membranes because it causes oxidative stress and inflammatory mediators, which can lead to DNA destruction even at low concentrations. Protecting people from the harmful effects of radiation is a challenging task due to the plethora of side effects of the chemical compounds used to mitigate DNA damage in normal cells. Hospitals continue to utilize radiotherapy for cancer treatment; yet, the adverse effects of the radiation they emit have outweighed the benefits. Plant phytochemicals and their derivatives exhibit diverse biological functions, often perceived as innocuous due to their non-toxic nature within subcellular and cellular environments. Moreover, they possess the capability to mitigate radiation-induced damage. This review aims to delineate the radioprotective attributes of plant polyphenols and extracts, elucidating their mechanisms of action across various models.
Downloads
References
Asl JF, Goudarzi M, Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep. 2020;72(4):857-66. doi: 10.1007/ s43440-020-00063-9
Sánchez-Marzo N, Pérez-Sánchez A, Barrajón-Catalán E, Castillo J, Herranz-López M, Micol V. Rosemary diterpenes and flavanone aglycones provide improved genoprotection against UV-induced DNA damage in a human skin cell model. Antioxidants. 2020;9(3):255. doi: 10.3390/antiox9030255
Shyam C, Dhawan DK, Chadha VD. In vivo radioprotective effects of wheatgrass (Triticum aestivum) extract against X-irradaition-induced oxidative stress and apoptosis in peripheral blood lymphocytes in rats. Asian J Pharm Clin Res. 2018;11(4):239-43. doi: 10.22159/ajpcr.2018. v11i4.23741
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA damage/ repair management in cancers. Cancers. 2020;12(4):1050. doi: 10.3390/ cancers12041050
Dobrzyńska MM, Gajowik A, Radzikowska J. The effect of lycopene supplementation on radiation-induced micronuclei in mice reticulocytes in vivo. Radiat Environ Biophys. 2019;58(3):425-32. doi: 10.1007/ s00411-019-00795-0
Singha I, Saxena S,Gautam S, Saha A, Das SK. Grape extract protect against ionizing radiation-induced DNA damage. Indian J Biochem Biophys 2020;57:19-227. doi: 10.56042/ijbb.v57i2.35194
Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 2017;15(1):232. doi: 10.1186/s12967-017-1338-x
Checker R, Pal D, Patwardhan RS, Basu B, Sharma D, Sandur SK. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, and plumbagin, as a novel strategy for radioprotection. Free Radic Biol Med. 2019;143:560-72. doi: 10.1016/j. freeradbiomed.2019.09.001
Vyas R, Sharma G, Sain D, Sisodia R. Effects of Chlorophytum borivilianum Sant. F against gamma radiation-induced testicular injuries in Swiss albino mice. Ayu. 2020;41(1):45-51. doi: 10.4103/ayu. ayu_82_20
Mantawy EM, Said RS, Abdel-Aziz AK. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed Pharmacother. 2019;109:293-303. doi: 10.1016/j.biopha.2018.10.092
Ansari L, Banaei A, Dastranj L, Majdaeen M, Vafapour H, Zamani H, et al. Evaluating the radioprotective effect of single dose and daily oral consumption of green tea, grape seed, and coffee bean extracts against gamma irradiation. Appl Radiat Isot. 2021;174:109781. doi: 10.1016/j. apradiso.2021.109781
Mun GI, Kim S, Choi E, Kim CS, Lee YS. Pharmacology of natural radioprotectors. Arch Pharm Res. 2018;41(11):1033-50. doi: 10.1007/ s12272-018-1083-6
Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules. 2023;28(16):5979. doi: 10.3390/molecules28165979
Mulinacci N, Valletta A, Pasqualetti V, Innocenti M, Giuliani C, Bellumori M, et al. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat Prod Res. 2019;33(8):1106-14. doi: 10.1080/14786419.2018.1457663
Gajowik A, Dobrzyńska MM. The evaluation of protective effect of lycopene against genotoxic influence of X-irradiation in human blood lymphocytes. Radiat Environ Biophys. 2017;56(4):413-22. doi: 10.1007/s00411-017-0713-6
Motallebnejad M, Zahedpasha S, Moghadamnia AA, Kazemi S, Moslemi D, Pouramir M, et al. Protective effect of lycopene on oral mucositis and antioxidant capacity of blood plasma in the rat exposed to gamma radiation. Caspian J Intern Med. 2020;11(4):419-25. doi: 10.22088/cjim.11.4.419
He LX, Zhang ZF, Zhao J, Li L, Xu T, Sun B, et al. Ginseng protect against irradiation-induced immune dysfunction and intestinal injury. Sci Rep. 2018;8(1):13916. doi: 10.1038/s41598-018-32188-6
Hanedan Uslu G, Canyilmaz E, Serdar L, Ersöz Ş. Protective effects of genistein and melatonin on mouse liver injury induced by whole-body ionising radiation. Mol Clin Oncol. 2019 Feb;10(2):261-6. doi: 10.3892/mco.2018.1790
Bakshi HA, Zoubi M, Hakkim FL, Aljabali A, Rabi FA, Hafiz AA, et al. Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients. 2020;12(6):1901. doi: 10.3390/nu12061901
Wang L, Cao Y, Zhang X, Liu C, Yin J, Kuang L, et al. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection. Colloids Surf B Biointerfaces. 2022;213:112441. doi: 10.1016/j.colsurfb.2022.112441
Wang H, Sim MK, Loke WK, Chinnathambi A, Alharbi SA, Tang FR, et al. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front Pharmacol. 2017;8:352. doi: 10.3389/fphar.2017.00352
Yakan S, Aydin T, Gulmez C, Ozden O, Eren Erdogan K, Daglioglu YK, et al. The protective role of jervine against radiation-induced gastrointestinal toxicity. J Enzyme Inhib Med Chem. 2019;
(1):789-98. doi: 10.1080/14756366.2019.1586681
Vasudeva V, Tenkanidiyoor YS, Peter AJ, Shetty J, Lakshman SP, Fernandes R, et al. Radioprotective efficacy of lutein in ameliorating electron beam radiation-induced oxidative injury in swiss albino mice. Iran J Med Sci. 2018;43(1):41-51.
Patil SL, Swaroop K, Kakde N, Somashekarappa HM. In vitro protective effect of rutin and quercetin against radiation-induced genetic damage in human lymphocytes. Indian J Nucl Med. 2017;32(4):289-95. doi: 10.4103/ijnm.IJNM_30_17
Mohammed M, Ahmed M, Montaser S. Cytogenetic and immunological efficacy of nicotiflorin and rutin combination on gamma irradiated rats. Int J Radiat Res. 2022;20(2):455-60. doi: 10.52547/ijrr.20.2.29
Mammadli SA, Muslumova ZH, Farajov MF. Study of the radioprotective properties of rutin and its complexes in plant systems. J Radiat Res. 2021;8(2):52-9.
Zoi V, Galani V, Tsekeris P, Kyritsis AP, Alexiou GA. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers. Biomedicines. 2022;10(2):312. doi: 10.3390%2Fbiomedicines10020312
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol. 2019;111:104299. doi: 10.1016/j.yexmp.2019.104299
Kim MS, Yang SJ, Jung SY, Lee TY, Park JK, Park YG, et al. Combination of phytochemicals, including ginsenoside and curcumin, shows a synergistic effect on the recovery of radiation-induced toxicity. PLoS One. 2024;19(1):e0293974. doi: 10.1371/journal.pone.0293974
Tian B, Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric. 2019;100(4):1392- 404. doi: 10.1002/jsfa.10152
Jawad M, Jawad M, Nazia H, Khalid Khan F, Ishaq A, Khan K. Resveratrol: A phenolic prodigy. Pak J Med Sci. 2022;5(4):9-13. doi: 10.54393/pbmj.v5i4.354
Banegas YC, Ocolotobiche EE, Padula G, Córdoba EE, Fernández E, Güerci AM. Evaluation of resveratrol radiomodifying potential for radiotherapy treatment. Mutat Res Genet Toxicol Environ Mutagen. 2018;836(Pt B):79-83. doi: 10.1016/j.mrgentox.2018.06.004
Heredia-Rojas JA, Beltcheva M, Fuente AO, Gomez-Flores RC, Metcheva R, Cantú-Martínez PC, et al. Evidence of radioprotective effect of resveratrol against clastogenic effect of extremely low-frequency electromagnetic fields. Acta Zool Bulg. 2020;S15:49-54.
Farooqi AA, Attar R, Xu B. Anticancer and anti-metastatic role of thymoquinone: Regulation of oncogenic signaling cascades by thymoquinone. Int J Mol Sci. 2022;23(11):6311. doi: 10.3390/ ijms23116311
Pekmez M, Milat NS. Evaluation of in vitro wound healing activity of thymoquinone. Eur J Biol. 2020;79(2):151-6. doi: 10.26650/ eurjbiol.2020.0044
Deniz CD, Aktan M, Erel O, Gurbilek M, Koc M. Evaluation of the radioprotective effects of thymoquinone on dynamic thiol-disulphide homeostasis during total-body irradiation in rats. J Radiat Res. 2029;60(1):23-8. doi: 10.1093/jrr/rry083
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape seeds proanthocyanidins: An overview of in vivo bioactivity in animal models. Nutrients. 2019;11(10):2435. doi: 10.3390/nu11102435
Li C, Zhang L, Liu C, He X, Chen M, Chen J. Lipophilic grape seed proanthocyanidin exerts anti-cervical cancer effects in HeLa cells and a HeLa-derived xenograft zebrafish model. Antioxidants. 2022;11(2):422. doi: 10.3390/antiox11020422
Wang L, Zhan J, Huang W. Grape seed proanthocyanidins induce apoptosis and cell cycle arrest of HepG2 cells accompanied by induction of the MAPK pathway and NAG-1. Antioxidants (Basel). 2020;9(12):1200. doi: 10.3390/antiox9121200
Xu Y, Huang Y, Chen Y, Cao K, Liu Z, Wan Z, et al. Grape seed proanthocyanidins play the roles of radioprotection on normal lung and radiosensitization on lung cancer via differential regulation of the MAPK signaling pathway. J Cancer. 2021;12(10):2844-54. doi: 10.7150/jca.49987
Qu X, Li Q, Zhang X, Wang Z, Wang S, Zhou Z. Amentoflavone protects the hematopoietic system of mice against γ-irradiation. Arch Pharm Res. 2019;42(11):1021-9. doi: 10.1007/s12272-019-01187-0
Shao S, Yi J, Regenstein JM, Cheng C, Zhang H, Zhao H, et al. Protective effects on 60Co-γ radiation damage of pine cone polyphenols from Pinus koraiensis-loaded chitosan microspheres in vivo. Molecules. 2018;23(6):1392. doi: 10.3390/molecules23061392
Mahgoub S, Sallam AO, Sarhan HK, Ammar AA, Soror SH. Role of diosmin in protection against the oxidative stress induced damage by gamma-radiation in Wistar albino rats. Regul Toxicol Pharmacol. 2020;113:104622. doi: 10.1016/j.yrtph.2020.104622
Prades-Sagarra E, Laarakker F, Dissy J, Lieuwes NG, Biemans R, Dubail M, et al. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiother Oncol. 2023;190:110021. doi: 10.1016/j.radonc.2023.110021
Kaur J, Kaur R. p-Coumaric acid: A naturally occurring chemical with potential therapeutic applications. Curr Org Chem. 2022;26(14):1333- 49. doi: 10.2174/1385272826666221012145959
Li YH, Wu JX, He Q, Gu J, Zhang L, Niu HZ, et al. Amelioration of radiation-induced liver damage by p-coumaric acid in mice. Food Sci Biotechnol. 2022;31(10):1315-23. doi: 10.1007/s10068-022-01118-8
Sisin NN, Mat NF, Rashid RA, Dollah N, Razak KA, Geso M, et al. Natural baicalein-rich fraction as radiosensitizer in combination with bismuth oxide nanoparticles and cisplatin for clinical radiotherapy. Int J Nanomedicine. 2022;17:3853-74. doi: 10.2147/IJN.S370478
Maurya DK, Lomte R. Baicalin protected mice against radiation-induced lethality: A mechanistic study employing in silico and wet lab techniques. Comput Toxicol. 2022;23:100229. doi: 10.1016/j. comtox.2022.100229
Zhang G, Sang T, Chen X, Ge C, Li B, Tian Y, et al. Orychophragine D: A new 2-piperazinone fused 5-azacytosine type alkaloid with radioprotective activity from the seeds of Orychophragmus violaceus. Fitoterapia. 2023;168:105544. doi: 10.1016/j.fitote.2023.105544
Ristanti EY, Ramlah S, Indriana D. Antiaging properties of cream made with cocoa polyphenol, Aloe vera (Aloe barbadensis) and seaweed (Euchema cottoni) AS active agents. J Ind Hasil Perkebunan. 2018;13(1):43-52. doi: 10.33104/jihp.v13i1.3760
Sousa EA, Neves EA, Alves CR. Therapeutic potential of Aloe vera (Aloe barbadensis): A brief review. Rev Virtual Quim. 2020;12(2):378- 88. doi: 10.21577/1984-6835.20200030
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of Aloe vera and its major active constituents. Molecules (Basel). 2020;25(6):1324. doi: 10.3390/ molecules25061324
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Radiomodulatory effects of Aloe vera on hepatic and renal tissues of X-ray irradiated mice. Mutat Res. 2018;811:1-15. doi: 10.1016/j.mrfmmm.2018.07.001
Behera A, Devi RS, Pradhan S, Biswal S, Jena PK, Biswal SK, et al. Phytochemical analysis and antioxidant potential of Costus speciosus l. phytochemical analysis and antioxidant potential of Costus speciosus L. Eur J Med Plants. 2020;31:64-72. doi: 10.9734/ejmp/2020/v31i1030284
Delarosa A, Hendrawan RP, Halimah E. Screening of Costus speciosus and determination of antioxidant potential using DPPH method: A review. Eur J Med Plants. 2023;34(7):17-28. doi: 10.9734/ejmp/2023/ v34i71146
Marzook EA, El-Bayoumy AS, Marzook FA. Preclinical evaluation of carnosine and Costus as hematological protective agents against gamma radiation. Radiat Res Appl Sci. 2019;12:304-10. doi: 10.1080/16878507.2019.1649931
Selim NM, El-Hawary SS, El Zalabani SM, Shamma RN, Mahdy NE, Sherif NH, et al. Impact of Washingtonia robusta leaves on gamma irradiation-induced hepatotoxicity in rats and correlation with STING pathway and phenolic composition. Pharmaceuticals. 2020;13(10):320. doi: 10.3390/ph13100320
Ghali EN, Maurya DK, Meriga B. Radioprotective properties of Pterocarpus santalinus chloroform extract in murine splenic lymphocytes and possible mechanism. Cancer Biother Radiopharm. 2018;33(10):427-37. doi: 10.1089/cbr.2018.2532
Joshi DM, Pathak SS, Banmare S, Bhaisare SS. Review of phytochemicals present in Psidium guajava plant and its mechanism of action on medicinal activities. Cureus. 2023;15(10):e46364. doi: 10.7759/cureus.46364
Naseer S, Hussain S, Naeem N, Pervaiz MU. The phytochemistry and medicinal value of Psidium guajava (guava). Clin Phytosci. 2018;4:32. doi: 10.1186/s40816018-0093-8
Alam A, Jawaid T, Alsanad SM, Kamal M, Balaha MF. Composition, antibacterial efficacy, and anticancer activity of essential oil extracted from Psidium guajava (L.) leaves. Plants (Basel). 2023;12(2):246. doi: 10.3390/plants12020246
Kumar A, Kumarchandra R, Rai R, Kumblekar V. Radiation mitigating activities of Psidium guajava L. against whole-body X-ray-induced damages in albino Wistar rat model. 3 Biotech. 2020;10(12):507. doi: 10.1007/s13205-020-02484-y
Gonçalves IL, Valduga AT. Trends in Ilex paraguariensis researches: A bibliometric analysis. J Ethn Foods. 2023;10(1):25. doi: 10.1186/ s42779-023-00193-4
Mereles Rodríguez BE, Fiedler JN, Chade ME. Antifungal capacity of aqueous extracts of Ilex paraguariensis fruits against dermatophite fungi. Rev Cien Tecnol. 2023;39:19-25. doi: 10.36995/j.recyt.2023.39.003
Luís NF, Domingues FD, Amaral LM. The anti-obesity potential of Ilex paraguariensis: Results from a meta-analysis. Braz J Pharm Sci. 2019;55:e17615. doi: 10.1590/s2175-97902019000217615
Bracesco N, Sosa V, Blanc L, Contreras V, Candreva EC, Salvo VA, et al. Analysis of radioprotection and antimutagenic effects of Ilex paraguariensis infusion and its component rutin. Braz J Med Biol Res. 2018;51(9):e7404. doi: 10.1590/1414-431X20187404
Farid A, Haytham M, Essam A, Safwat G. Efficacy of the aqueous extract of Siwa dates in protection against the whole body γ irradiation-induced damages in mice. J Radiat Res Appl Sci. 2021;14:322-35. doi: 10.1080/16878507.2021.1963628
Abou-Zeid SM, EL-Bialy BE, EL-Borai NB, AbuBakr HO, Elhadary AM. Radioprotective effect of Date syrup on radiation- induced damage in Rats. Sci Rep. 2018;8(1):7423. doi: 10.1038/s41598-018-25586-3
Khezerloo D, Mortezazadeh T, Farhood B, Sheikhzadeh P, Seyfizadeh N, Pezhman L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J Cancer Res Ther. 2019;15(3):517-5. doi: 10.4103/jcrt.JCRT_1341_16
Boison D, Adinortey CA, Babanyinah GK, Quasie O, Agbeko R, Wiabo-Asabil GK, et al. Costus afer: A systematic review of evidence-based data in support of its medicinal relevance. Scientifica (Cairo). 2019;2019:3732687. doi: 10.1155/2019/3732687
Ezejiofor AN, Orisakwe OE. The protective effect of Costus afer ker gawl aqueous leaf extract on lead-induced reproductive changes in male albino wistar rats. JBRA Assist Reprod. 2019;23(3):215-24. doi: 10.5935/1518-0557.20190019
Ndoni S, Ere D, Okoko T. Assessment of the in vitro anti-lipid peroxidative activity of Costus afer stem extract. Oxid Antioxid Med Sci. 2017;6(2):30. doi: 10.5455/oams.130417.or.105
Amaefula BE, Nwaoguikpe RN, Igwe CU. The antisickling effect of stem extracts of Costus afer. GSC Biol Pharm Sci. 2023;23(3):237-44. doi: 10.30574/gscbps.2023.23.3.0252
Nwaogwugwu C. GC-MS and preliminary phytochemical constituents of Costus afer crude stem juice. Med Anal Chem Int J. 2019;3(4):000149. doi: 10.23880/macij-16000149
Egbiremhon BO, Prisca AS, Ogbonna ET, Joseph RC, Oguebie RN. Green synthesis of sliver nanoparticles using Costus afer aqueous leaf extract and its effect on liver and kidney biomarkers in adult male wistar rat. Int J Res Public Rev. 2023;4(11):901-7. doi: 10.55248/ gengpi.4.1123.113018
Akomolafe IR, Chetty N. Radioprotective potential of costus afer against the radiation-induced hematological and histopathological damage in mice. Radiat Oncol J. 2021;39(1):61-71. doi: 10.3857/ roj.2021.00017
Magpantay EC, Sucgang AT, Clemencia MC, Villar TD, Torio MA. Preliminary assessment of the antihypertensive and antioxidative activities of the peptides from “Saba” banana (Musa balbisiana Colla) Flesh. KIMIKA. 2019;30(1):31-9. doi: 10.26534/kimika.v30i1.31-39
Noysang C, Buranasukhon W, Khuanekkaphan M. Phytochemicals and pharmacological activities from banana fruits of several Musa species for using as cosmetic raw materials. Appl Mech Mater. 2019;891:30- 40. doi: 10.4028/www.scientific.net/amm.891.30
Kamal AM, Taha MS, Mousa AM. The radioprotective and anticancer effects of banana peels extract on male mice. J Food Nutr Res. 2019;7(12):827-35. doi: 10.12691/jfnr-7-12-3
Oladimeji O, Ahmadu AA. Antioxidant activity of compounds isolated from Pycnanthus angolensis (WELW.) warb and Byrophyllum pinnatum (Lam.) Oken. Eur Chem Bull. 2019;8(3):96. doi: 10.17628/ ecb.2019.8.96-100
Achel DG, Alcaraz-Saura M, Castillo J, Olivares A, Alcaraz M. Radioprotective and antimutagenic effects of Pycnanthus angolensis warb seed extract against damage induced by X rays. J Clin Med. 2020;9(1):6. doi: 10.3390/jcm9010006
Atchoglo PK, Amponsah IK, Fokou PV, Harley BK, Baah MK, Armah FA, et al. Anti-Mycobacterium ulcerans activity and pharmacognostic standardisation of Pycnanthus angolensis (Welw) Warb. Sci Afr. 2021;13:e00935. doi: 10.1016/j.sciaf.2021.e00935
Zhong L, Peng L, Fu J, Zou L, Zhao G, Zhao J. Phytochemical, antibacterial and antioxidant activity evaluation of Rhodiola crenulata. Molecules. 2020;25(16):3664. doi: 10.3390/molecules25163664
Lee SY, Lin KT, Chen Y, Dai YH. Rhodiola crenulata extract supplement significantly attenuates hypoxia-reduced oxygen saturation and cognitive function. J Herb Med. 2023;41:100732. doi: 10.1016/j. hermed.2023.100732
Lin KT, Chang TC, Lai FY, Lin CS, Chao HL, Lee SY. Rhodiola crenulata attenuates γ-ray induced cellular injury via modulation of oxidative stress in human skin cells. Am J Chin Med. 2018;46(1):175- 90. doi: 10.1142/S0192415X18500106
Uttam D, Tanmay S, Rita G, Subir Kumar D. Trianthema portulacastrum L.: Traditional medicine in healthcare and biology. Indian J Biochem Biophys. 2020;57(2):127-45.
Aswathy PU, Ahmad AH, Pant D, Patwal PC, Verma M, Maletha D. Ameliorative potential of Trianthema portulacastrum L. in cyclophosphamide induced hepatotoxicity and nephrotoxicity in rats. J Vet Pharmacol. 2023;22(1):45-8.
Bashir S, Abbas S, Khan A. Pharmacological studies on prokinetic and laxative effects of Trianthema portulacastrum Linn. Int J Complement Alt Med. 2018;11(6):368-73. doi: 10.15406/ijcam.2018.11.00428
Das U, Saha T, Babu AS, Das SK. Hepatoprotective activity of Trianthema portulacastrum L. against lipopolysaccharide/D-galactosamine induced hepatotoxicity in mice. Indian J Exp Biol. 2023;61:705-11. doi: 10.56042/ijeb.v61i09.3784
Das U, Saha T, Das SK. Trianthema portulacastrum L. Extract protects against gamma radiation induced human red blood cell membrane damage in vitro. Indian J Biochem Biophys. 2018;55:321-7.
Das U, Saha T, Sharma RK, Maurya DK, Ray PS, Das SK. Antioxidant and anti-inflammatory activities mediate the radioprotective effect of Trianthema portulacastrum L. extracts. Nat Prod J. 2023;13(5):98-109. doi: 10.2174/2210315512666220627154721
Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018;261:75-86. doi: 10.1016/j.foodchem.2018.04.039
Valero-Mendoza AG, Meléndez-Rentería NP, Chávez-González ML, Flores-Gallegos AC, Wong-Paz JE, Govea-Salas M, et al. The whole pomegranate (Punica granatum. L), biological properties and important findings: A review. Food Chem Adv. 2023;2:100153. doi: 10.1016/j. focha.2022.100153
Thotambailu AM, Bhandary BS, Sharmila KP. Protective effect of Punica granatum extract in head and neck cancer patients undergoing radiotherapy. Indian J Otolaryngol Head Neck Surg. 2019;71(Suppl1):318-20. doi: 10.1007/s12070-018-1297-4
Kaur M, Ahmed S, Singh H, Sharma A. Phytochemical and pharmacological overview of Triticum aestivum: An update. Curr Tradit Med. 2022;8(4):51-9. doi: 10.2174/2215083808666220428135532
Gupta R, Meghwal M, Prabhakar PK. Bioactive compounds of pigmented wheat (Triticum aestivum): Potential benefits in human health. Trends Food Sci Technol. 2021;110:240-52. doi: 10.1016/j. tifs.2021.02.003
Kaviya M, Balamuralikrishnan B, Sangeetha T, Senthilkumar N, Malaisamy A, Sivasamy M, et al. Evaluation of phytoconstituents of Triticum aestivum grass extracts on nutritional attributes, antioxidant, and antimicrobial activities against food pathogens with molecular in silico investigation. Food Front. 2023;4(2):831-48. doi: 10.1002/ fft2.233
Millat MS, Amin MN, Uddin MS. Phytochemical screening and antimicrobial potential analysis of methanolic extracts of ten days mature Triticum aestivum Linn. (Whole plants). Discov Phytomed. 2019;6(1):16-9. doi: 10.15562/phytomedicine
Park J, Kil YS, Ryoo GH, Jin CH, Hong MJ, Kim JB, et al. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines (Triticum aestivum L.). Fronts Nutr. 2023;10:1334344. doi: 10.3389/fnut.2023.1334344
Lešnik S, Furlan V, Bren U. Rosemary (Rosmarinus officinalis L.): Extraction techniques, analytical methods and health-promoting biological effects. Phytochem Rev. 2021;20:1-56. doi: 10.1007/s11101- 021-09745-5
Francolino R, Martino M, Caputo L, Amato G, Chianese G, Gargiulo E, et al. Phytochemical constituents and biological activity of wild and cultivated Rosmarinus officinalis hydroalcoholic extracts. Antioxidants (Basel). 2023;12(8):1633. doi: 10.3390/antiox12081633
Hasanzadeh M, Bahreyni Toossi MT, Vaziri-Nezamdoost F, Khademi S, Darroudi M, Azimian H. Comparison of radioprotective effects of colloidal synthesis of selenium nanoparticles in aqueous rosemary extract and rosemary in Chinese hamster ovary (CHO) cells. J Nanostruct. 2022;12(3):711-7. doi: 10.22052/JNS.2022.03.023
Zhaeintan P, Nickfarjam A, Shams A, Abdollahi-Dehkordi S, Hamzian N. Radioprotective effect of Rosmarinus officinalis L (Rosemary) essential oil on apoptosis, necrosis and mitotic death of human peripheral lymphocytes (PBMCs). J Biomed Phys Eng. 2022;12(3):245. doi: 10.31661%2Fjbpe.v0i0.2105-1333
Lorigooini Z, Koravand M, Haddadi H, Rafieian-Kopaei M, Shirmardi HA, Hosseini Z. A review of botany, phytochemical and pharmacological properties of Ferulago angulata. Toxin Rev. 2019;38(1):13-20. doi: 10.1080/15569543.2017.1399277
Sheykhi R, Bagherzade G, Khani R. The application of gas chromatography to detect and analyze the fatty acids content and its phytochemical properties in Ferulago angulate (Schlecht.) Boiss. Iran J Med Aromat Plants Res. 2018;34(5):757-65. doi: 10.22092/ ijmapr.2018.116261.2191
Moshafi MH, Torabizadeh SA, Mohamadnezhad F, Jomehzadeh A, Khodaei M, Fekri HS. Ferulago angulata as a good radioprotector against genotoxicity. Curr Radiopharm. 2022;15(2):110-6. doi: 10.217 4/1874471014666210426111806
Seyedi F, Torabizadeh SA, Naeimi A. Radioprotective effect of a novel and green bio-nanohybrid, chitosan/silver/cobalt complex, based on Ferulago angulate plant. Biotechnol Appl Biochem. 2022;69(4):1567- 75. doi: 10.1002/bab.2228
Raman VK, Chauhan SK, Chaudhuri A. Actinidia deliciosa: A nature’s boon to modern pharmacotherapeutics. In: Applied Pharmaceutical Science and Microbiology. Florida: Apple Academic Press; 2020. p. 83-94. doi: 10.1201/9781003019565-5
Satpal D, Kaur J, Bhadariya V, Sharma K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J Food Process Preserv. 2021;45(6):e15588. doi: 10.1111/jfpp.15588
Ribeiro MD, Sebastià N, Montoro A, García-Martínez E. Strawberry (Fragaria× ananassa) and Kiwifruit (Actinidia deliciosa) extracts as potential radioprotective agents: Relation to their phytochemical composition and antioxidant capacity. Appl Sci. 2023;13(15):8996. doi: 10.3390/app13158996
Hossain F, Mostofa MG, Alam AK. Traditional uses and pharmacological activities of the genus Leea and its phytochemicals: A review. Heliyon. 2021;7(2):e06222. doi: 10.1016/j.heliyon.2021.e06222
Singh D, Siew YY, Yew HC, Neo SY, Koh HL. Botany, phytochemistry and pharmacological activities of Leea species. In: Medicinal Plants. Florida: CRC Press; 2019. p. 11-41. doi: 10.1201/9780429259968-2
Marasigan C, Jacinto F. Radioprotective potential of Leea manillensis syn. guineensis (Abang-abang) leaf extract on gamma-irradiated human blood lymphocytes in vitro. Manila J Sci. 2023;16(1):1-12.
Shadid KA, Shakya AK, Naik RR, Jaradat N, Farah HS, Shalan N, et al. Phenolic content and antioxidant and antimicrobial activities of Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L. leaves extract. J Chem. 2021;2021:1. doi: 10.1155/2021/886740
Mousavi SM, Hashemi SA, Behbudi G, Mazraedoost S, Omidifar N, Gholami A, et al. A review of the health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evid Based Complement Alternat Med. 2021;2021:5548404. doi: 10.1155/2021/5548404
Batiha GE, Tene ST, Teibo JO, Shaheen HM, Oluwatoba OS, Teibo TK, et al. The phytochemical profiling, pharmacological activities, and safety of Malva sylvestris: A review. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(3):421-40. doi: 10.1007/s00210-022-02329-w
Fathi M, Ghane M, Pishkar L. Phytochemical composition, antibacterial, and antibiofilm activity of Malva sylvestris against human pathogenic bacteria. Jundishapur J Nat Pharm Prod. 2022;17(1):e114164. doi: 10.5812/jjnpp.114164
Mhamdıa C, Seguenı N, Hamdi B, Hamdi AR, Bakı A, Hamdi MD. An ethnobotanical survey and an in vivo study of the anti-inflammatory effect of Malva sylvestris L. Ethnobot Res Appl. 2023;26:1-13. doi: 10.32859/era.26.9.1-13
Azmoonfar R, Khosravi H, Rafieemehr H, Mirzaei F, Dastan D, Ghiasvand MR, et al. Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat: A histopathological study. Biochem Biophys Rep. 2023;34:101455. doi: 10.1016/j.bbrep.2023.101455
Korany DA, Ayoub IM, Labib RM, El-Ahmady SH, Singab AN. The impact of seasonal variation on the volatile profile of leaves and stems of Brownea grandiceps (Jacq.) with evaluation of their anti-mycobacterial and anti-inflammatory activities. S Afr J Bot. 2021;142:88-95. doi: 10.1016/j.sajb.2021.06.013
Korany D, Said R, Ayoub I, Milad R, El-Ahmady S, Singab AN. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother. 2022;146:112603. doi: 10.1016/j. biopha.2021.112603
Tewari S, Patel M, Debnath AV, Mehta P, Patel S, Bakshi S. Bamboo leaf extract ameliorates radiation induced genotoxicity: An in vitro study of chromosome aberration assay. J Herb Med. 2022;31:100528. doi: 10.1016/j.hermed.2021.100528
Pacifico S, Bláha P, Faramarzi S, Fede F, Michaličková K, Piccolella S, et al. Differential radiomodulating action of Olea europaea L. cv. Caiazzana leaf extract on human normal and cancer cells: A joint chemical and radiobiological approach. Antioxidants (Basel). 2022;11(8):1603. doi: 10.3390/antiox11081603
Akomolafe I, Chetty N. Evaluation of radioprotective efficacy of Drymaria cordata extract on whole-body radiation-induced hematological damage in mice. Iran J Med Phys. 2022;19:136-44. doi: 10.22038/IJMP.2021.56512.1946
Kenneth S, Nneka O, Kalu A, Joseph A. Radioprotective potencies of Allium cepa extract (ACE) against radiation-induced hepatoxicity in wistar rats. Int J Med Phys Clin Eng Radiat Oncol. 2023;12:59-83. doi: 10.4236/ijmpcero.2023.123007
Hamzian N, Nickfarjam A, Shams A, Haghiralsadat F, Najmi- Nezhad M. Effects of ionizing radiation on human peripheral blood mononuclear cells (PBMCs) in the presence of Mentha-pulegium essential oil: A study on the radioprotective effect. J Biomed Phys Eng. 2022;12(2):137-48. doi: 10.31661/jbpe.v0i0.2109-1397
Published
How to Cite
Issue
Section
Copyright (c) 2024 RAPHAEL JILANI MWALIMU, Dr. Azhagu Saravana Babu Packirisamy
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.