TARGETED THERAPY FOR BREAST CANCER CELLS BY HERBAL DRUG FORMULATIONS OF IRON OXIDE NANOPARTICLES
Abstract
Nanoparticle based drug delivery is the currently focused area in case of various therapeutic and diagnostic techniques. Iron oxide nanoparticles are used as carriers in drug delivery due to their unique properties and negligible side effects. We analyze the potential therapeutic properties of methanolic extracts of Centella asiatica loaded with PVP iron oxide nanoparticles against human breast cancer cell lines MCF-7 and the results were compared with normal cell lines. Characterization of coated nanoparticles was done by UV-VIS spectroscopy, FTIR spectroscopy and Particle size analyzer. Loading of herbal drug extract to nanoparticles was confirmed using TEM, Particle size analyzer, FTIR and Biochemical assays. Initially, dose depended hydrogen per oxide free radical scavenging activity were recorded. Methanolic extracts of Centella asiatica showed 55, 59, 71 and 80% inhibition respectively. MTT assay was performed to estimate the drug loading efficiency for PVP coated iron oxide nanoparticle at 1hr and 24 hrs. At 10µl concentration methanolic extracts of Centella asiatica loaded PVP coated iron oxide nanoparticles exhibited significant cell necrosis in breast cancer cell line MCF-7 as 60%. In case of normal cell lines L929, the cytotoxicity was reduced to 10.42 respectively. This work was aimed to increase the efficiency, reduce side effects of chemotherapeutic drugs and provide conveniences for the future therapeutics by coupling herbal drug with polymer coated nanoparticles.Â
Downloads
References
Mitra, AK, Faruque. FS, Breast cancer incidence and exposure to environmental chemicals in 82 counties in Mississippi. Southern medical journal, 2004, 97(3): 259-263. http://www.ncbi.nlm.nih.gov/pubmed/15043333
Desai, SB., Moonim, MT., Gill, AK., Punia, RS., Naresh, KN., Chinoy, RF. Hormone receptor status of breast cancer in India: a study of 798 tumours. The breast, 2000, 9(5), 267-270.
http://www.ncbi.nlm.nih.gov/pubmed/14732176
Brody, JG., Moysich, KB., Humblet, O., Attfield, KR., Beehler, GP., Rudel, R. A. Environmental pollutants and breast cancer. Cancer, 2007, 109(S12), 2667-2711.
http://www.ncbi.nlm.nih.gov/pubmed/17503436
Smith, RA., Caleffi, M., Albert, US., Chen, TH., Duffy, SW., Franceschi, D., Nyström, L. Breast Cancer in Limitedâ€Resource Countries: Early Detection and Access to Care. The Breast Journal, 2006, 12(s1), S16-S26. http://www.ncbi.nlm.nih.gov/pubmed/16430395
Wang, X., Wei, Y., Yuan, S., Liu, G., Lu, Y., Zhang, J., Wang, W. Potential anticancer activity of tanshinone IIA against human breast cancer. International journal of cancer, 2005, 116(5), 799-807. http://www.ncbi.nlm.nih.gov/pubmed/15849732
Yezhelyev MV, Gao X, Xing Y, Hajj AA, Nie S, Regan RMO. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol.; 2006, 7: 657–667. http://www.ncbi.nlm.nih.gov/pubmed/16887483
Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine land scape. Nat Biotechnol.; 2006, 24:1211–1217. http://palgrave.nature.com/nbt/journal/v24/n10/full/nbt1006-1211.html
Sriram, MI., Kanth, SBM., Kalishwaralal, K., Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. International journal of nanomedicine, 2010, 5, 753. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2962271/
Brigger, I., Dubernet, C., Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews, 2002. 4(5):631-51. http://www.ncbi.nlm.nih.gov/pubmed/12204596
Brown, SD., Nativo, P., Smith, JA., Stirling, D., Edwards, PR., Venugopal, B., et al., Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society, 2010, 132(13), 4678-4684. http://pubs.acs.org/doi/abs/10.1021/ja908117a
Liu, Y., Miyoshi, H., Nakamura, M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 2007, 120(12), 2527-2537. http://www.ncbi.nlm.nih.gov/pubmed/17390371
Berry, CC., Curtis, AS. Functionalization of magnetic nanoparticles for applications in biomedicine. Journal of physics D: Applied physics, 2003, 36(13), R198. http://iopscience.iop.org/article/10.1088
Nel, A., Xia, T., Mädler, L., Li, N. Toxic potential of materials at the nano level. Science, 2006, 311(5761), 622-627. http://www.ncbi.nlm.nih.gov/pubmed/16456071
Yigit, MV., Moore, A., Medarova, Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharmaceutical research, 2012, 29(5), 1180-1188. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734862/
Jain, TK., Morales, MA., Sahoo, SK., Leslie-Pelecky, DL., Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular pharmaceutics, 2005, 2(3), 194-205. http://www.ncbi.nlm.nih.gov/pubmed/15934780
Gohil, KJ., Patel, JA., Gajjar, AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian journal of pharmaceutical sciences, 2010, 72(5), 546. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116297/
Babu, TD., Kuttan, G., Padikkala, J. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban. Journal of Ethnopharmacology, 1995, 48(1), 53-57. http://www.ncbi.nlm.nih.gov/pubmed/8569247
Singh, N., Manshian, B., Jenkins, GJ., Griffiths, SM., Williams, PM., Maffeis, TG., et al., NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, 30(23), 3891-3914. http://www.ncbi.nlm.nih.gov/pubmed/19427031
Yu, H., Xu, X., Chen, X., Lu, T., Zhang, P., Jing, X. Preparation and antibacterial effects of PVAâ€PVP hydrogels containing silver nanoparticles. Journal of applied polymer science, 2007, 103(1), 125-133. http://onlinelibrary.wiley.com/doi/10.1002/app.24835/
Nishikawa, M., Huang, L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Human gene therapy, 2001, 12(8), 861-870. http://www.ncbi.nlm.nih.gov/pubmed/11387052
Harborne, AJ. Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media, 1998. https://books.google.co.in/books/about/Phytochemical_Methods_A_Guide_to_Modern.html
Rahmatullah, M., Das, AK., Mollik, MAH., Jahan, R., Khan, M., Rahman, T., Chowdhury, MH. An Ethnomedicinal Survey of Dhamrai Sub-district in Dhaka District, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 2009, 3(4), 881-888. http://www.researchgate.net/publication/228673477
Qian, X., Peng, XH., Ansari, DO., Yin-Goen, Q., Chen, GZ., Shin, DM., et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 2008, 26(1), 83-90. http://www.nature.com/nbt/journal/v26/n1/abs/nbt1377.html
Tang, ELH., Rajarajeswaran, J., Fung, SY., Kanthimathi, MS. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complementary and Alternative Medicine, 2013, 13(1), 347. http://www.biomedcentral.com/1472-6882/13/347
Shukla, A., Rasik, AM., Jain, GK., Shankar, R., Kulshrestha, DK., Dhawan, BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. Journal of Ethnopharmacology, 1999, 65(1), 1-11. http://www.ncbi.nlm.nih.gov/pubmed/10350364
Sunitha A, Praseetha PK, Diagnostics and Treatment of Metastatic Cancers with Magnetic Nanoparticles. J. Nanomed. Biotherap. Discov. 2013, 3(2), 115-125. http://www.omicsonline.org/2155-983X.1000115.php
Jana D., Radim H., Vojtech A., Rene K., Oldrich S., Jaromir H., Preparation and Properties of Various Magnetic Nanoparticles. Sensors. 2009, 6. 2352-2362. http://www.mdpi.com/1424-8220/9/4/2352
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.