ULTRASONIC-ASSISTED EXTRACTION USING A BETAINE-BASED NATURAL DEEP EUTECTIC SOLVENT FOR RESVERATROL EXTRACTION FROM MELINJO (GNETUM GNEMON) SEEDS

Authors

  • WIDYA DWI ARYATI Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
  • KHUSNA MILLATI AZKA Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
  • ABDUL MUN’IM Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia

DOI:

https://doi.org/10.22159/ijap.2020.v12s1.FF001

Keywords:

Gnetum gnemon, Resveratrol, Natural deep eutectic solvent, Response surface methodology

Abstract

Objective: Melinjo (Gnetum gnemon L.) seeds are known to contain resveratrol, which are classified as a phenolic compound of the stilbenoid. Melinjo
seeds have high water content, making them unstable to be stored for prolonged periods with open packaging at room temperature. The present study
aimed to explore the use of ultrasonic-assisted extraction with a betaine-based natural deep eutectic solvent (NADES) for resveratrol extraction from
irradiated melinjo seeds.
Methods: The best betaine-based NADES component was identified among betaine-urea, betaine-lactic acid, and betaine-malic acid. Optimization of
extraction methods was performed using the best NADES and extraction variables such as time of extraction, water percentage, and sample: solvent
ratio. The outcome of extraction was evaluated by measuring resveratrol content using high-performance liquid chromatography and the results were
analyzed using response surface methodology.
Results: The best betaine-based NADES was found to be betaine-lactic acid, yielding a resveratrol content of 0.3344 mg/g powder. The optimum
extraction was achieved in 10 min with 60% water and a sample: solvent ratio of 1:10, yielding a resveratrol content of 0.227 mg/g powder.
Conclusion: Betaine-based NADES can be purposed as an alternative solvent for resveratrol extraction from irradiated melinjo seeds.

Downloads

Download data is not yet available.

References

1. Barua CC, Haloi P, Barua IC. Gnetum gnemon Linn.: A comprehensive
review on its biological, pharmacological and pharmacognostical
potentials. Int J Pharm Phytochem Res 2015;7:531-9.
International Union for Conservation of Nature. Gnetum gnemon: Baloch
E; 2009. Available from:http://www.iucnredlist.org/details/194943/0.
[Last accessed on 2019 Sep 09].
2. Manner HI, Buker RS, Smith VE, Ward D, Elevitch C. Gnetum gnemon.
Species Profiles for Pacific Island Agroforestry. Hawai‘i: Western
SARE, Sustainable Agriculture Research and Education; 2006. p. 1-9.
3. Watanabe K, Shibuya S, Ozawa Y, Izuo N, Shimizu T. Resveratrol
derivative-rich melinjo seed extract attenuates skin atrophy in sod1-
deficient mice. Oxid Med Cell Longev 2015;2015:391075.
4. Liu C, Wang L, Wang J, Wu B, Liu W, Fan P, et al. Resveratrols in vitis
berry skins and leaves: Their extraction and analysis by HPLC. Food
Chem 2013;136:643-9.
Table 3: Optimum extraction conditions
No. Extraction time (min) Water percentage (%) Sample: solvent ratio (g/mL) Resveratrol level (mg/g) Desirability index
1. 13.37 60.00 13.36 0.226 0.988
2. 13.32 60.00 13.36 0.226 0.988
3. 13.29 60.00 13.26 0.225 0.988
4. 13.21 60.00 13.48 0.225 0.988
5. 13.58 60.00 13.54 0.225 0.988
6. 13.30 60.00 13.07 0.225 0.988
7. 13.64 60.00 13.45 0.225 0.988
8. 12.72 60.00 12.96 0.225 0.987
9. 14.31 60.00 12.93 0.225 0.986
10. 14.41 60.00 13.43 0.225 0.986
11. 12.24 60.00 13.57 0.225 0.986
12. 14.13 59.95 13.27 0.225 0.985
13. 14.72 60.00 13.12 0.225 0.985
14. 11.93 60.00 14.00 0.225 0.984
15. 14.90 60.00 13.06 0.225 0.984
16. 11.53 60.00 13.65 0.225 0.982
17. 14.92 60.00 14.24 0.225 0.982
18. 14.47 60.00 11.61 0.225 0.982
19. 11.15 60.00 14.55 0.224 0.979
20. 14.99 60.00 10.96 0.224 0.976
21. 13.79 60.00 10.02 0.223 0.971
22. 15.00 60.00 20.68 0.214 0.895
23. 15.00 40.00 13.04 0.196 0.746
5. Chatterjee S, Kumar V, Khole S, Sanyal B, Murali TS, Variyar PS.
Radiation processing: An effective quality control tool for hygienization
and extending shelf life of a herbal formulation, amritamehari churnam.
J Rad Res Appl Sci 2006;9:86-95.
6. Jeong RD, Chu EH, Lee GW, Cho C, Park HJ. Inhibitory effect of
gamma irradiation and its application for control of postharvest green
mold decay of satsuma mandarins. Int J Food Microbiol 2016;234:1-8.
7. Chemat F, Vian MA, Cravotto G. Green extraction of natural products:
Concept and principles. Int J Mol Sci 2012;13:8615-27.
8. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural
deep eutectic solvents as new potential media for green technology.
Anal Chim Acta 2013;766:61-8.
9. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte AR. Natural
deep eutectic solvents-solvents for the 21st century. ACS Sustain Chem
Eng 2014;2:1063-71.
10. Aroso IM, Paiva A, Reis RL, Duarte AR. Natural deep eutectic solvents
from choline chloride and betaine-physicochemical properties. J Mol
Liq 2017;241:654-61.
11. Duan L, Dou L, Guo L, Li P, Liu E. Comprehensive evaluation of
deep eutectic solvents in extraction of bioactive natural products. ACS
Sustain Chem Eng 2016;4:2405-11.
12. Fan JP, Yu JX, Xu R, Zheng B, Xu XK, Zhang XH. Optimization of
ultrasonic-assisted extraction of three main taxoids in the twigs of
Taxus × media using multi-objective response surface methodology.
J Liq Chromatogr Relat Technol 2016;39:394-400.
13. Khodaverdian S, Dabirmanesh B, Heydari A, Dashtban-Moghadam E,
Khajeh K, Ghazi F. Activity, stability and structure of laccase in
betaine based natural deep eutectic solvents. Int J Biol Macromol
2018;107:2574-9.
14. Bajkacz S, Adamek J. Development of a method based on natural deep
eutectic solvents for extraction of flavonoids from food samples. Food
Anal Methods 2018;11:1330-44.
15. Espino M, Fernández MD, Gomez FJ, Silva MF. Natural designer
solvents for greening analytical chemistry. Trends Analyt Chem
2016;76:126-36.
16. Souto AA, Carneiro MC, Seferin M, Senna MJ, Conz A, Gobbi K.
Determination of trans-resveratrol concentrations in Brazilian red
wines by HPLC. J Food Compost Anal 2001;14:441-5.
17. Mishima K, Siregar YD, Kawamura H, Kawakami R, Ito S, Inoue Y,
et al. Extraction of resveratrol from melinjo (Gnetum gnemon L.) seeds
using mixtures of liquid carbon dioxide and ethanol. Solvent Extr Res
Dev Jpn 2015;22:69-77.
18. Rachmawati M, Ayuningtyas IN, Sutriyo S, Mun’im A. Comparison
of ionic liquid-microwave-assisted extraction and MAE of resveratrol
from melinjo (Gnetum gnemon L.) seeds. J Appl Pharm Sci 2017;7:23-9.

Published

23-03-2020

How to Cite

ARYATI, W. D., AZKA, K. M., & MUN’IM, A. (2020). ULTRASONIC-ASSISTED EXTRACTION USING A BETAINE-BASED NATURAL DEEP EUTECTIC SOLVENT FOR RESVERATROL EXTRACTION FROM MELINJO (GNETUM GNEMON) SEEDS. International Journal of Applied Pharmaceutics, 12(1), 26–31. https://doi.org/10.22159/ijap.2020.v12s1.FF001

Issue

Section

Original Article(s)