METHOD VALIDATION OF SIMVASTATIN IN PCL-PEG-PCL TRIBLOCK COPOLYMER MICELLES USING UV-VIS SPECTROPHOTOMETRIC FOR SOLUBILITY ENHANCEMENT ASSAY
DOI:
https://doi.org/10.22159/ijap.2022v14i1.42961Keywords:
Simvastatin, Triblock copolymer, PCL, PEG, Validation, Uv-Vis spectrophotometricAbstract
Objective: This study aims to increase the solubility of simvastatin (SIM), a hydrophobic drug, by incorporating it into PCL-PEG-PCL triblock copolymer micelles and validating the assay method used, namely Uv-Vis spectrophotometric.
Methods: The shake flask method was used to determine the increase in solubility experienced by SIM after being incorporated into the micellar system. The values of maximum wavelength (λmax), linearity, LOD, LOQ, accuracy, and precision were used as parameters measured to assess the validity of the assay method used.
Results: The results showed that PCL-PEG-PCL triblock copolymer micelles could increase SIM solubility by 9.7 times (89.49±5.75 µg/ml) compared to SIM without modification (9.19±0.24 µg/ml). The validation results show the λmax value of 239 nm, a linear calibration curve with an R-value of 0.9994, LOD and LOQ of 0.33 µg/ml and 1.00 µg/ml, accurate measurement with recovery at concentrations of 80%, 100%, and 120% were 102.93±1.32%, 100.78±0.40%, and 104.58±0.79% and also had good precision with RSD<2%.
Conclusion: The PCL-PEG-PCL triblock copolymer micelles can increase SIM solubility and the Uv-Vis spectrophotometric method has been validated successfully for the quantitative analysis of SIM in PCL-PEG-PCL triblock copolymer micelles.
Downloads
References
He G, Ma LL, Pan J, Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and ”stealth” particle characteristics. Int J Pharm. 2007;334(1-2):48-55. doi: 10.1016/j.ijpharm.2006.10.020, PMID 17116377.
Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69(4):581-90. PMID 22876598.
Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230-9. doi: 10.3109/03639045.2011.645830, PMID 22229827.
Rohilla A, Khan MU, Khanam R. Cardioprotective potential of simvastatin in the hyperhomocysteinemic rat heart. J Adv Pharm Technol Res. 2012;3(3):193-8. doi: 10.4103/2231-4040.101018, PMID 23057007.
Yulianita R, Sopyan I, Muchtaridi M. Forced degradation study of statins: a review. Int J Appl Pharm. 2018;10(6):38-42. doi: 10.22159/ijap.2018v10i6.29086.
Verma N. Introduction to hyperlipidemia and its treatment: a review. Int J Curr Pharm Sci. 2017;9(1):6-14. doi: 10.22159/ijcpr.2017v9i1.16616.
Rosyida NF, Pudyani PS, Nugroho AK, Ana ID, Ariyanto T. Solubility enhancement of simvastatin through surfactant addition for development of hydrophobic drug-loaded gelatin hydrogel. Indones J Chem. 2019;19(4):920-7. doi: 10.22146/ijc.38153.
Meor Mohd Affandi MM, Tripathy M, Shah SA, Majeed AB. Solubility enhancement of simvastatin by arginine: thermodynamics, solute–solvent interactions, and spectral analysis. Drug Des Devel Ther. 2016;10:959-69. doi: 10.2147/DDDT.S94701, PMID 27041998.
Essa EA, Dwaikat M. Enhancement of simvastatin dissolution by surface solid dispersion: effect of carriers and wetting agents. J Appl Pharm Sci. 2015;5:46-53.
Borawake PD, Arumugam K, Shinde JV. Formulation of solid dispersions for enhancement of solubility and dissolution rate of simvastatin. Int J Pharm Pharm Sci. 2021;13:94-100. doi: 10.22159/ijpps.2021v13i7.41205.
Pescina S, Sonvico F, Clementino A, Padula C, Santi P, Nicoli S. Preliminary investigation on simvastatin-loaded polymeric micelles in view of the treatment of the back of the eye. Pharmaceutics. 2021;13(6):1-15. doi: 10.3390/pharmaceutics13060855, PMID 34207544.
Shital SP, Rakesh M, Shirolkar SV. Spherical agglomeration a novel approach for solubility and dissolution enhancement of simvastatin. Asian J Pharm Clin Res. 2016;9:65-72.
Sopyan I, Syah ISK, Nurhayti D, Budiman A. Improvement of simvastatin dissolution rate using derivative non-covalent approach by solvent drop grinding method. Int J Appl Pharm. 2020;12:21-4. doi: 10.22159/ijap.2020v12i1.35865.
Sopyan I, Fudhol A, Puspitasari MM I. A simple effort to enhance solubility and dissolution rate of simvastatin using co-crystallization. Int J Pharm Pharm Sci. 2016;8:342-6.
Sulaiman TNS, Patmayuni D, Zulkarnain AK. Optimization of PCL-PEG-PCL triblock copolymer micelles as hydrophobic drug carrier with a 22 full factorial design. Int J Appl Pharm. 2019;11:42-7.
Birari AE. Development and validation of UV spectrophotometric method for estimation of simvastatin in bulk and solid dosage form. Int J Pharm Sci Res. 2015;6:85-9.
Dey S, Pradhan PK, Upadhayay UM, Patel C, Lad B. Method development and validation of simvastatin by UV spectrophotometric method. J Pharm Res. 2012;5:5380-2.
Sharma M, Kaur R, Singh S, Kharb V, Jain UK. Development and validation of Uv spectroscopic method for the estimation of simvastatin. World J Pharm Pharm Sci. 2013;3:763-71.
Panamasha AJ, Tejaswi K, Parimala SS. Spectrophotometric estimation of simvastatin in bulk and tablet dosage form. Int J Innov Pharm Res. 2013;4:284-7.
Sandeep K, Suresh P, Gupta GD. Effect of non-ionic surfactant on the solubility and dissolution of simvastatin. Int Res J Pharm. 2011;2:100-2.
AOAC. Peer verified program, manual on policies and procedures. Washington DC. Arlington; 1993.
Moffat C, Osselton M, Widdop B. Clarke’s analysis of drugs and poisons. 3rd ed. London: Pharmaceutical Press; 2005.
Alami-milani M, Zakeri-milani P, Valizadeh H, Salehi R, Jelvehgari M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci. 2018;21(2):153-64. doi: 10.22038/IJBMS.2017.26590.6513, PMID 29456812.
Cho HK, Cheong IW, Lee JM, Kim JH. Polymeric nnanoparticles, mmicelles, and ppolymersomes ffrom aamphiphilic bblock ccopolymer. Kor J Chem Eng. 2010;27:731-40.
Zamani S, Khoee S. Preparation of core-shell chitosan/PCL-PEG triblock copolymer nanoparticles with ABA and BAB morphologies: effect of intraparticle interactions on physicochemical properties. Polymer. 2012;53(25):5723-36. doi: 10.1016/j.polymer.2012.09.051.
Rajeshwar BR, Gatla A, Rajesh G, Arjun N, Swapna M. Polymeric micelles: A nanoscience technology. Indo American J Pharm Res. 2011;1:351-63.
Doolaanea AA, Mawazi SM, Hadi HAB, Al-mahmood SMAMawazi SM, Hadi HAB, Al-mahmood SMA, Doolaanea AA. Development and validation of UV–vis spectroscopic method of assay of carbamazepine in microparticles. Int J Appl Pharm. 2019;11(1):34-7. doi: 10.22159/ijap.2019v11i1.26256.
Prasad AR, Thireesha B. Uv-spectrophotometric method development and validation for the determination of lornoxicam in microsponges. Int J Appl Pharm. 2018;10(1):74-8. doi: 10.22159/ijap.2018v10i1.22357.
Published
How to Cite
Issue
Section
Copyright (c) 2022 DEWI PATMAYUNI, T. N. SAIFULLAH SULAIMAN, ABDUL KARIM ZULKARNAIN, SHAUM SHIYAN
This work is licensed under a Creative Commons Attribution 4.0 International License.