5-FLUOROURACIL IMPREGNATED NIOSOMAL-IN SITU GEL (THERMO-SENSITIVE) FOR ORAL CANCER: DESIGN, CHARACTERIZATION, IN VITRO/EX VIVO EVALUATION

Authors

  • RAHUL KUMAR SINGH Department of Pharmaceutics, Rajiv Academy for Pharmacy, P. O. Chhatikara, Mathura 281001, Uttar Pradesh, India, Department of Pharmaceutics, Bhupal Nobel’s Institute of Pharmaceutical Sciences, Bhupal Nobel’s University, Central Area, Udaipur 313001, Rajasthan, India
  • ANIRUDH SINGH DEORA Department of Pharmaceutics, Bhupal Nobel’s Institute of Pharmaceutical Sciences, Bhupal Nobel’s University, Central Area, Udaipur 313001, Rajasthan, India

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44195

Keywords:

5-Fluorouracil, Niosomes, In-situ gel, Span-60, Cholesterol, Modified-ether injection method, Modified-cold method

Abstract

Objective: To formulate and characterize 5-fluorouracil loaded niosomal-in-situ gel for sustained drug delivery to reduce dosing frequency at the same time, follow a local drug delivery for cancer targeting.

Methods: Cholesterol and span-60-based niosomes were prepared after following the modified ether injection method. Best formulation selected after characterization through FTIR, SEM, % Entrapment efficiency, zeta potential, polydispersity index, in vitro release, and vesicle size whereas, based on cold method niosomes encapsulated in-situ gel was formulated and characterized through gelling temperature and time, spreadability and syringe ability, gel strength, adhesive force, and drug release.

Results: Based on various studies, included particle size, PDI, zeta potential value, % Entrapment efficiency and % drug release, F1 formulation was selected as a best formulation, as niosomal particle size of 388.3 nm proved a higher drug permeation through the buccal area, whereas PDI and zeta potential value of 0.304 and+50.5 are proved a uniform niosomal size with optimum charge distribution which helps to attain higher stability of the formulation, on the other hand % Entrapment efficiency of 87.825% proved that niosomes are capable to hold higher drug concentration; lastly 84.567% of drug release within 12 h of time period prove that higher amount of drug release occur by following sustained release pattern. On the other hand Mucoadhesion, gelling strength and in vitro permeation studies prove that niosomes containing in-situ gel has a capacity to adhere over the mucosa with minimum dissolution with saliva up to 12 h and is capable of 95% of drug permeation capacity. Lastly FTIR and SEM images confirmed about niosomal formation with optimum stability.

Conclusion: 5-Fluorouracil encapsulated niosomal in-situ gel will be superior and effective alternative to parenteral dosage forms available in the market for mouth cancer treatment.

Downloads

Download data is not yet available.

References

Oral cancer: MD Anderson Cancer Center. https://www.mdanderson.org/cancer-types/oral-cancer.

Jin BZ, Dong XQ, Xu X, Zhang FH. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol Lett. 2018;15(2):2541-9. doi: 10.3892/ol.2017.7613. PMID 29434971.

Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine. 2015;10:1569-84. doi: 10.2147/IJN.S75474. PMID 25759580.

Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine. 2014;9:3719-35. doi: 10.2147/IJN.S61670. PMID 25143724.

Hao YM, Li K. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int J Pharm. 2011;403(1-2):245-53. doi: 10.1016/j.ijpharm.2010.10.027, PMID 20971171.

Vyas SP. Theory and practice in novel drug delivery system. CBS Pub Dist 2009;1:284-98.

Sharma R, Dua JS, Prasad DN, Hira S. Advancement in novel drug delivery system: niosomes. J Drug Deliv Ther. 2019;9(3):995-1001. doi: 10.22270/jddt.v9i3-s.2931.

Gharbavi M, Amani J, Kheiri-Manjili HK, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci. 2018;2018:6847971. doi: 10.1155/2018/6847971, PMID 30651728.

Reddy CP, Chaitanya KS, Rao MY. A review on bioadhesivebuccal drug delivery systems: current status of formulation and evaluation methods. Daru. 2011;19(02):385-403. PMCID PMC3436075.

Aggarwal D, Garg A, Kaur IP. Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm Pharmacol. 2004;56(12):1509-17. doi: 10.1211/0022357044896, PMID 15563757.

Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesiveniosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1-2):155-9. doi: 10.1016/j.ijpharm.2004.10.026, PMID 15664141.

Akhtar N, Kumar Singh R, Pathak K. Exploring the potential of complex-vesicle based niosomal ocular system loaded with azithromycin: development of in situ gel and ex vivo characterization. Pharmaceutical and Biomedical Research 2017;3(1):22-33. doi: 10.18869/acadpub.pbr.3.1.22.

Kumar BS, Krishna R, Laksmi PS, Vasudev DT, Nair SC. Formulation and evaluation of niosomal suspension of cefixime. Asian J Pharm Clin Res. 2017;10(3):194-201. doi: 10.22159/ajpcr.2017.v10i5.17189.

Radha GV, Sastri KT, Prathyusha P, Bhanu P, Rajkumar J. Formulation and Evaluation of aceclofenacproniosome loaded orabase for management of dental pain. Int J App Pharm. 2018;10(6):204-10. doi: 10.22159/ijap.2018v10i6.29143.

Kamboj S, Saini V, Bala S. Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. Scientific World Journal. 2014;2014:959741. doi: 10.1155/2014/959741, PMID 24672401.

Ruckmani K, Sankar V. Formulation and optimization of zidovudineniosomes. AAPS PharmSciTech. 2010;11(3):1119-27. doi: 10.1208/s12249-010-9480-2, PMID 20635228.

Acharya A, Kiran KGB, Ahmed MG, Paudel SA. Novel approach to increase the bioavailability of candesartan cilexetil by proniosomal gel formulation: in vitro and in vivo evaluation. Int J Pharm Pharm Sci. 2016;8(1):241-6.

Praveen C, Ujwala D. Synthesis and evaluation of water insoluble but swellable bioadhesive polymer for ocular drug delivery. Ind J Pharm Educ Res. 2019;53(2):225-35. doi: 10.5530/ijper.53.2.30.

Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull. 2016;73(5):1229-45. doi: 10.1007/s00289-015-1544-8.

Haznedar S, Dortunç B. Preparation and in vitro evaluation of eudragit microspheres containing acetazolamide. Int J Pharm. 2004;269(1):131-40. doi: 10.1016/j.ijpharm.2003.09.015. PMID 14698584.

Higuchi T. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(1):1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas OD, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186-93. doi: 10.1016/j.ejpb.2010.02.011, PMID 20188828. ejpb.2010.02.011.

Kulkarni AP, Aslam Khan SK, Dehghan MH. Evaluation of polaxomer-based in situ gelling system of articaine as a drug delivery system for anesthetizing periodontal pockets– an in vitro study. Ind J Dent. 2012;3(4):201-8. doi: 10.1016/j.ijd.2012.07.006.

Maheswaran A, Padmavathy J, Nandhini V, Saravanan D, Angel P. Formulation and evaluation of floating oral in situ gel of diltiazem hydrochloride. Int J App Pharm. 2017;9(1):50-3. doi: 10.22159/ijap.2017v9i1.15914.

Hasan MJ, Kamal BA. Formulation and evaluation of ranitidine hydrochloride are floating in situ gel. Int J Pharm Pharm Sci. 2014;6(2):401-5.

Thomas LM. Formulation and evaluation of floating oral in-situ gel of metronidazole. Int J Pharm Pharm Sci. 2014;6:265-9.

Khan N, Aqil M, Imam SS, Ali A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization. Pharm Dev Technol. 2015;20(6):662-9. doi: 10.3109/10837450.2014.910807, PMID 24754411.

Zaki NM, Awad GA, Mortada ND, Abd Elhady SS. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci. 2007;32(4-5):296-307. doi: 10.1016/j.ejps.2007.08.006. PMID 17920822.

Chaudhary B, Verma S. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. Scientific World Journal. 2014;2014:280928. doi: 10.1155/2014/280928. PMID 24790559.

Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using box-behnken design: in vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019;554:264-75. doi: 10.1016/j.ijpharm.2018.11.016, PMID 30423418.

Qi H, Chen W, Huang C, Li L, Chen C, Li W. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007;337(1-2):178-87. doi: 10.1016/j.ijpharm.2006.12.038. PMID 17254725.

Paradkar MU, Parmar M. Formulation development and evaluation of Natamycinniosomal in-situ gel for ophthalmic drug delivery. J Drug Deliv Sci Technol. 2017;39(4):113-22. doi: 10.1016/j.jddst.2017.03.005.

Jones DS, Lawlor MS, Woolfson AD. Examination of the flow rheological and textural properties of polymer gels composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone): rheological and mathematical interpretation of textural parameters. J Pharm Sci. 2002;91(9):2090-101. doi: 10.1002/jps.10195, PMID 12210055.

Sanjana A, Ahmed MH, Jaswanth GBH. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofac Res. 2021;11(2):269-76. doi: 10.1016/j.jobcr.2021.02.001.

Kotreka UK, Davis VL, Adeyeye MC. Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLOS One. 2017;12(2):e0172306. doi: 10.1371/journal.pone.0172306. PMID 28222100.

Semalty A, Semalty M, Nautiyal U. Formulation and evaluation of mucoadhesive buccal films of enalapril maleate. Indian J Pharm Sci. 2010;72(5):571-5. doi: 10.4103/0250-474X.78522, PMID 21694987.

Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423(2):303-11. doi: 10.1016/j.ijpharm.2011.11.032, PMID 22155414.

Khan R, Irchhaiya R. In vitro in vivo evaluation of niosomal formulation of famotidine. Int J Pharm Pharm Sci. 2020:15-22. doi: 10.22159/ijpps.2020v12i3.36210.

Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404-16. doi: 10.1016/j.ajps.2015.09.004.

Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. DJNB. 2014;9(1):83-91.

Owodeha Ashaka K, Ilomuanya MO, Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog Biomater. 2021;10(3):207-20. doi: 10.1007/s40204-021-00164-5, PMID 34549376.

Balakrishnana P, Shanmugama S, Leea WS, Leea WM, Kim JO. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(2):1-8. doi: 10.1016/j.ijpharm.2009.04.020.

Salih OS, Samein LH, Ali WK. Formulation and in vitro evaluation of rosuvastatin calcium niosomes. Int J Pharm Pharm Sci. 2013;5(2):525-35.

Shilakari Asthana G, Sharma PK, Asthana A. In vitro and in vivo evaluation of niosomal formulation for controlled delivery of clarithromycin. Scientifica. 2016;2016:6492953. doi: 10.1155/2016/6492953. PMID 27293976.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1-15. doi: 10.1016/j.ajps.2018.04.008. PMID 32104434.

Sheshala R, Ming NJ, Kok YY, Raj Singh TRR, Dua K. Formulation and Characterization of pH Induced in situ gels containing sulfacetamide sodium for ocular drug delivery: a combination of carbopol®/ HPMC polymer. Indian J Pharm Educ Res. 2019;53(4):654-62. doi: 10.5530/ijper.53.4.127.

Bhalerao H, Koteshwara KB, Chandran S. Levofloxacin hemihydrate in situ gelling ophthalmic solution: formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20(7):272. doi: 10.1208/s12249-019-1489-6, PMID 31372767.

Teubl BJ, Meindl C, Eitzlmayr A, Zimmer A, Frohlich E, Roblegg E. In vitro permeability of neutral polystyrene particles via buccal mucosa. Small. 2013;9(3):457-66. doi: 10.1002/smll.201201789, PMID 23112142.

Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;10:1328. doi: 10.3389/fphar.2019.01328, PMID 31827435.

Published

07-07-2022

How to Cite

SINGH, R. K., & DEORA, A. S. (2022). 5-FLUOROURACIL IMPREGNATED NIOSOMAL-IN SITU GEL (THERMO-SENSITIVE) FOR ORAL CANCER: DESIGN, CHARACTERIZATION, IN VITRO/EX VIVO EVALUATION. International Journal of Applied Pharmaceutics, 14(4), 126–137. https://doi.org/10.22159/ijap.2022v14i4.44195

Issue

Section

Original Article(s)