PREPARATION OF SALBUTAMOL SULPHATE LOADED LOCUST BEAN GUM-POLYVINYL ALCOHOL COMPOSITE CRYOGEL FOR DRUG DELIVERY

Authors

  • NEHA RAINA Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India https://orcid.org/0000-0002-9678-8749
  • MEENAKSHI BHATIA Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India https://orcid.org/0000-0003-4568-7582
  • RIMPY PAHWA Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India https://orcid.org/0000-0003-2087-1105
  • RAKESH PAHWA Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
  • MADHU GUPTA Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India https://orcid.org/0000-0002-8503-0609
  • MANISH KUMAR M M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India https://orcid.org/0000-0003-2042-1243

DOI:

https://doi.org/10.22159/ijap.2022v14i6.44816

Keywords:

Cryogel, Drug delivery, Freeze thaw process, Locust bean gum, Polymer modification, Sustained release

Abstract

Objective: The key goal of the experimental study involves the preparation of salbutamol sulphate drug-loaded freeze thawed composite cryogels, comprising locust bean gum and polyvinyl alcohol and evaluating them for drug delivery.

Methods: The cryogels were formulated using freeze thaw process and characterization was performed using numerous techniques like Fourier transform-infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction studies, swelling behaviour and in vitro drug release.

Results: FTIR spectra of drug loaded LBG-PVA composite cryogels showed sharp peak at 3437 cm-1 owing to O-H stretching of free hydroxyl groups. DSC thermogram of LBG-PVA composite cryogels displayed a broad endotherm with hump at 190.85 °C. XRD analysis of LBG-PVA composite cryogel indicated characteristic peak at 19.83° (2θ) which suggest that formation of cryogels between two polymers contributes to a decrease in crystallinity. SEM analysis depicted that LBG-PVA composite cryogels were porous in nature as interconnected and irregular pores with thick walls. Swelling study inferred that on increasing the concentration of both polymers the swelling ability of LBG-PVA increased considerably. Results obtained from optimization study suggested that greater concentration of both locust bean gum and polyvinyl alcohol favoured release of salbutamol sulphate in a sustained manner. The experimental findings display in vitro release of salbutamol sulphate as 77.75% over duration of 24 h following Higuchi’s square root release kinetics.

Conclusion: The outcomes of the experimental investigation depicted that locust bean gum in combination with polyvinyl alcohol favoured synergistically with release of salbutamol sulphate in a sustained manner.

Downloads

Download data is not yet available.

References

Ermawati DE, Yugatama A, Ramadhani BR, Pertiwi I, Rosikhoh A, Novachiria SR. Stability and antibacterial activity test of nanosilver biosynthetic hydrogel. Int J App Pharm. 2022;14(2):221-6, doi: 10.22159/ijap.2022v14i2.43584.

Bangar B, Shinde N, Deshmukh S, Kale B. Natural polymers in drug delivery development. Res J Pharm Dosage Form Tech. 2014;6(1):54-7.

Wielinga WC, Maehall AG, Philips GO, Williams PA. Galactomannans handbook of hydrocolloids. Science. 2000:137-53.

Kumar K, Dhawan N, Sharma H, Vaidya S, Vaidya B. Bioadhesive polymers: novel tool for drug delivery. Artif Cells Nanomed Biotechnol. 2014;42(4):274-83. doi: 10.3109/21691401.2013.815194, PMID 23859698.

Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol. 2010;47(6):587-97. doi: 10.1007/s13197-010-0162-6, PMID 23572691.

Kar M, Chourasiya Y, Maheshwari R, Tekade RK. Current developments in excipient science: implication of quantitative selection of each excipient in product development. In: Academic Press;2019. p. 29-83. doi: 10.1016/B978-0-12-817909-3.00002-9.

Silva FEF, Di-Medeiros MCB, Batista KA, Fernandes KF. PVA/polysaccharides blended films: mechanical properties. Journal of Materials. 2013;2013:1-6. doi: 10.1155/2013/413578.

Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm. 2000;26(10):1025-38. doi: 10.1081/ddc-100100266, PMID 11028217.

Meenakshi AM, Ahuja M. Metronidazole loaded carboxymethyl tamarind kernel polysaccharide-polyvinyl alcohol cryogels: preparation and characterization. Int J Biol Macromol. 2015;72:931-8. doi: 10.1016/j.ijbiomac.2014.09.040, PMID 25301698.

Bhatia M, Ahuja M. Psyllium arabinoxylan: carboxymethylation, characterization and evaluation for nanoparticulate drug delivery. Int J Biol Macromol. 2015;72:495-501. doi: 10.1016/j.ijbiomac.2014.08.051, PMID 25199870.

Abhishek, Rimpy, Ahuja M. Moringa gum-g-poly(N-vinyl-2-pyrrolidone)–a potential buccoadhesive polymer. Int J Biol Macromol. 2018;109:732-9. doi: 10.1016/j.ijbiomac.2017.12.112, PMID 29292151.

Banegas RS, Zornio CF, Borges AdMG, Porto LC, Soldi V. Preparation, characterization and properties of films obtained from cross-linked guar gum. Polímeros. 2013;23(2):182-8. doi: 10.4322/polimeros.2013.082.

Sharma R, Ahuja M. Thiolated pectin: synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydr Polym. 2011;85(3):658-63, doi: 10.1016/j.carbpol.2011.03.034.

Bethell GS, Ayers JS, Hearn MTW, Hancock WS. Investigation of the activation of cross-linked agarose with carbonyl ting reagents and the preparation of matrices for affinity chromatography purifications. J Chromatogr A. 1987;219(3):353-9. doi: 10.1016/S0021-9673(00)80378-7.

Teramoto N, Motoyama T, Yosomiya R, Shibata M. Synthesis and properties of thermoplastic propyl-etherified amylose. Eur Polym J. 2002;38(7):1365-9. doi: 10.1016/S0014-3057(01)00306-8.

Zhang H, Zhang F, Wu J. Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React Funct Polym. 2013;73(7):923-8. doi: 10.1016/ j.reactfunctpolym.2012.12.014.

Polymeric Cryogels: Macroporousgels with remarkable properties. Okay O. editor. Springer International Publishing; 2014.

Jain E, Kumar A. Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network. J Biomater Sci Polym Ed. 2009;20(7-8):877-902. doi: 10.1163/156856209X444321, PMID 19454158.

Dionisio M, Grenha A. Locust bean gum: exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci. 2012;4(3):175-85. doi: 10.4103/0975-7406.99013, PMID 22923958.

Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ. Locust bean gum: a versatile biopolymer. Carbohydr Polym. 2013;94(2):814-21. doi: 10.1016/j.carbpol.2013.01.086, PMID 23544637.

Barak S, Mudgil D. Locust bean gum: processing, properties and food applications-a review. Int J Biol Macromol. 2014;66:74-80. doi: 10.1016/j.ijbiomac.2014.02.017, PMID 24548746.

Ertürk G, Mattiasson B. Cryogels-versatile tools in bioseparation. J Chromatogr A. 2014;1357:24-35. doi: 10.1016/j.chroma.2014.05.055, PMID 24915836.

Lozinsky VI. Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull. 2008;57(5):1015-32, doi: 10.1007/s11172-008-0131-7.

Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater. 2017;62:29-41. doi: 10.1016/j.actbio.2017.08.033, PMID 28851666.

Hassan CM, Peppas NA. Structure and applications of poly vinyl alcohol hydrogels produced by conventional crosslinking or by freezing/thawing methods. In Biopolymers• PVA Hydrogels, Anionic Polymerisation Nanocomposites. Springer, Berlin, Heidelberg; 2000. p. 37-65. https://doi.org/10.1007/3-540-46414-X_2.

Lozinsky VI. Cryotropic gelation of poly(vinyl alcohol) solutions. Russ Chem Rev. 1998;67(7):573-86. doi: 10.1070/RC1998v067n07ABEH000399.

Williams PD, Sadar LN, Martin Lo Y. Texture stability of hydrogel complex containing curdlan gum over multiple freeze–thaw cycles. J Food Process Preserv. 2009;33(1):126-39. doi: 10.1111/j.1745-4549.2009.00364.x.

Raina N, Rani R, Pahwa R, Gupta M. Biopolymers and treatment strategies for wound healing: an insight view. Int J Polym Mater Polym Biomater. 2022;71(5):359-75. doi: 10.1080/00914037.2020.1838518.

Chronakis IS. On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: a review. Crit Rev Food Sci Nutr. 1998;38(7):599-637. doi: 10.1080/10408699891274327, PMID 9813736.

Giannouli P, Morris ER. Cryogelation of xanthan. Food Hydrocoll. 2003;17(4):495-501. doi: 10.1016/S0268-005X(03)00019-5.

Tanaka R, Hatakeyama T, Hatakeyama H. Formation of locust bean gum hydrogel by freezing–thawing. Polym Int. 1998;45:118-26. doi: 10.1002/(SICI)1097-0126(199801)45:1%3C118::AID-PI908%3E3.0.

Tripathi A, Melo JS. Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J Chem Sci. 2019;131(9):92, doi: 10.1007/s12039-019-1670-1.

Wan W, Bannerman AD, Yang L, Mak H. Poly (Vinyl Alcohol) cryogels for biomedical applications. Advances in Polymer Science. 2014:283-321. doi: 10.1007/978-3-319-05846-7_8.

Stauffer SR, Peppast NA. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer. 1992;33(18):3932-6. doi: 10.1016/0032-3861(92)90385-A.

Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX. Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm. 2008;359(1-2):79-86. doi: 10.1016/j.ijpharm.2008.03.021, PMID 18440737.

Al-Mousawy JM, Ashoor JA, Mohammed Ali MM. Design and evaluation of fast dissolving granules of salbutamol sulfate. Int J App Pharm. 2022;14(2):252-5. doi: 10.22159/ijap.2022v14i2.43206.

Cascone MG, Maltinti S, Barbani N, Laus M. Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J Mater Sci Mater Med. 1999;10(7):431-5. doi: 10.1023/a:1008983215833. PMID 15348129.

Xiao C, Gao Y. Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly (vinyl alcohol) complex hydrogels. J Appl Polym Sci. 2008;107(3):1568-72. doi: 10.1002/app.27203.

Raina N, Rani R, Khan A, Nagpal K, Gupta M. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym Bull. 2020;77(9):5027-50. doi: 10.1007/s00289-019-02996-5.

Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W. Investigation of Salecan/poly vinyl alcohol hydrogels prepared by freeze/thaw method. Carbohydr Polym 2015;118:60-9. https://doi.org/10.1016/j.carbpol.2014.11.021.

Dragan ES, Lazar MM, Dinu MV, Doroftei F. Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J. 2012;204:198-209. doi: 10.1016/j.cej.2012.07.126.

Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119(1):5-24. doi: 10.1016/j.jconrel.2007.01.004. PMID 17382422.

Tanaka T, Fillmore DJ. Kinetics of swelling of gels. The Journal of Chemical Physics. 1979;70(3):1214-8. doi: 10.1063/1.437602.

Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK. Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug Deliv. 2017;24(1):1429-40. doi: 10.1080/10717544.2017.1377315, PMID 28942680.

Ahmed A, Niazi MBK, Jahan Z, Ahmad T, Hussain A, Pervaiz E. In vitro and in vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing. Eur Polym J. 2020;130:109650. doi: 10.1016/j.eurpolymj.2020.109650.

Nair RM, Bindhu B, VLR. A polymer blend from gum arabic and sodium alginate–preparation and characterization. J Polym Res. 2020;27(6). doi: 10.1007/s10965-020-02128-y.

Sharma R, Pahwa R, Ahuja M. Iodine‐loaded poly (silicic acid) gellan nanocomposite mucoadhesive film for antibacterial application. J Appl Polym Sci. 2021;138(2):49679. doi: 10.1002/app.49679.

Dash GS, Murthy PN, Chowdary KA. Selection and optimization of most efficient super disintegrant for the formulation of dispersible tablets of tramadol hydrochloride. Int J Pharm Pharm Sci. 2022;14:21-6. doi: 10.22159/ijpps.2022v14i7.43638.

Kaity S, Ghosh A. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres. Int J Biol Macromol. 2015;72:883-93. doi: 10.1016/j.ijbiomac.2014.09.036, PMID 25307127.

Erturk G, Mattiasson B. Cryogels-versatile tools in bioseparation. J Chromatogr A. 2014;1357:24-35. doi: 10.1016/j.chroma.2014.05.055, PMID 24915836.

Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, JiC, Koshy S, Khademhosseini A, Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371-83. doi: 10.1089/ten.TEB.2009.0639. PMID 20121414.

Kaity S, Isaac J, Ghosh A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr Polym. 2013;94(1):456-67. doi: 10.1016/j.carbpol.2013.01.070. PMID 23544563.

Published

07-11-2022

How to Cite

RAINA, N., BHATIA, M., PAHWA, R., PAHWA, R., GUPTA, M., & KUMAR, M. (2022). PREPARATION OF SALBUTAMOL SULPHATE LOADED LOCUST BEAN GUM-POLYVINYL ALCOHOL COMPOSITE CRYOGEL FOR DRUG DELIVERY. International Journal of Applied Pharmaceutics, 14(6), 223–231. https://doi.org/10.22159/ijap.2022v14i6.44816

Issue

Section

Original Article(s)

Most read articles by the same author(s)