MAGNETIC NANOPARTICLE-BASED APPROACHES IN CANCER THERAPY–A CRITICAL REVIEW

Authors

  • KARTHIKEYAN RAMADOSS Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu https://orcid.org/0000-0001-8954-1361
  • VELMURUGAN VADIVEL SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu https://orcid.org/0000-0001-5316-6854
  • ABISHEK V. Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu https://orcid.org/0000-0003-2073-1778
  • LAKSHMI K. Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu

DOI:

https://doi.org/10.22159/ijap.2022v14i6.45064

Keywords:

Cancer therapy, Magnetic nanoparticles (MNPs), Functionalization, Drug delivery, Hyperthermia, Combination therapy

Abstract

Cancer is definitely one of the leading causes of mortality worldwide. Failure in the efficacy of the standard treatments (chemo-, radiotherapy and surgery), and the severe side effects, resistance of tumor cells to chemotherapeutics have necessitated alternative therapeutic strategies. Magnetic nanoparticles (MNPs) have been assessed as potential cancer therapy materials. Their intrinsic magnetic properties provide a cancer detection, monitoring, and therapy platform based on multimodal theranostics. MNPs can be functionalized by binding them to a wide variety of substances, including chemotherapeutic drugs, radionuclides, nucleic acids, and antibodies. They can be used for drug delivery, magnetic or photothermal induced local hyperthermia and photodynamic therapy aimed at killing cancer cells at the tumor site. MNPs may also be useful to challenge drug resistance. The combination of different options of these treatment modalities offers a synergistic effect and significantly reduces the side effects. The functionalized MNPs may be used to remove the unwanted cells from blood, including leukemia cells and circulating tumor cells that key factors in the metastatic process. Despite numerous successful studies, there are still some unpredictable obstacles relevant to the use of MNPs in cancer therapy. This review mainly focuses on the application of MNPs in cancer treatment, covering future perspectives and challenges aspects.

Downloads

Download data is not yet available.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660.

Ponmani J, Kanakarajan S, Selvaraj R, Kamalanathan A. Induced apoptotic potential of green synthesized AgNPs from Sargassum wightii on human prostate cancer (PC-3) cells. Chettinad Health City Med J. 2021;10(3):127-35.

Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics. 2020;12(2):147. doi: 10.3390/pharmaceutics12020147, PMID 32053995.

Narayan S, Saraswathi N, Sivakami M, Jino AR, Naseem BSP. Biopolymeric nano-based formulations for oral drug delivery applications need and concern. Chettinad Health City Med J. 2020;9(2):108-16.

Naeem M, Awan UA, Subhan F, Cao J, Hlaing SP, Lee J. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res. 2020;43(1):153-69. doi: 10.1007/s12272-020-01219-0, PMID 31989477.

Iqbal S, Naveed Yasin M, Sheardown H. Engineering of targeted nanoparticles by using self-assembled bio-integrated block copolymers. Surf Modif Nanoparticles Target Drug Deliv. 2019:451-66.

Furlani EP. Magnetic biotransport: analysis and applications. Materials. 2010;3(4):2412-46. doi: 10.3390/ma3042412.

Sharma R, Mody N, Agrawal U, Vyas SP. Theranostic nanomedicine; a next-generation platform for cancer diagnosis and therapy. Mini Rev Med Chem. 2017;17(18):1746-57. doi: 10.2174/ 1389557516666160219122524, PMID 26891932.

Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted magnetic nanotheranostics of cancer. Molecules. 2017;22(6):975. doi: 10.3390/molecules22060975, PMID 28604617.

Adeirma S, Wathoni Nasrul M, Imade J. Targeted drug delivery system; nanoparticle-based combination of chitosan and alginate for cancer therapy: a review. Int J Appl Pharm. 2021:69-76.

Hosu T, Tertis, Cristea. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magneto chemistry. 2019;5(4):55. doi: 10.3390/magnetochemistry5040055.

Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials. 2018;154:147-57. doi: 10.1016/ j.biomaterials. 2017.10.047, PMID 29128843.

Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619. doi: 10.3389/fchem.2018.00619, PMID 30619827.

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.

Gosecki M, Gadzinowski M, Gosecka M, Basinska T, Slomkowski S. Polyglycidol, its derivatives, and polyglycidol-containing copolymers-synthesis and medical applications. Polymers. 2016;8(6):227. doi: 10.3390/polym8060227, PMID 30979324.

Durr S, Janko C, Lyer S, Tripal P, Schwarz M, Zaloga J. Magnetic nanoparticles for cancer therapy. Nanotechnol Rev. 2013;2(4):395-409. doi: 10.1515/ntrev-2013-0011.

Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnology. 2019;17(1):73. doi: 10.1186/s12951-019-0506-y, PMID 31151445.

Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):23. doi: 10.1186/s40580-019-0193-2, PMID 31304563.

Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: Two-in-One approach for cancer. Int J Mol Sci. 2018;19(10):3264. doi: 10.3390/ijms19103264, PMID 30347840.

Yojanay P, Vaishnvib S, Arpitap T. Green synthesis of magnetic iron nanoparticles using medicinal plant Tridax procumbens leaf extracts and its application as an antimicrobial agent against E. coli. Int J Appl Pharm. 2020:34-9.

Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol. 2017;7(5):738-46. doi: 10.3892/mco.2017.1399, PMID 29075487.

Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425(2):393-7. doi: 10.1016/j.bbrc.2012.07.108, PMID 22842461.

Li C, Li L, Keates AC. Targeting cancer gene therapy with magnetic nanoparticles. Oncotarget. 2012;3(4):365-70. doi: 10.18632/oncotarget.490, PMID 22562943.

Qi L, Wu L, Zheng S, Wang Y, Fu H, Cui D. Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of Sirna. Biomacromolecules. 2012;13(9):2723-30. doi: 10.1021/bm3006903, PMID 22913876.

Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington). 2018;21(6):673-85. doi: 10.1016/j.mattod.2017.11.022, PMID 30197553.

Buabeid MA, Arafa E-SA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res. 2020;2020:9624532. doi: 10.1155/2020/9624532, PMID 32377541.

Gutierrez L, Mejias R, Barber DF, Veintemillas Verdaguer S, Serna CJ, Lazaro FJ. Fighting cancer with magnetic nanoparticles and immunotherapy. SPIE Proc. 2012. doı: 10.1117/12.905890.

Zhang H, Liu XL, Zhang YF, Gao F, Li GL, He Y. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci. 2018;61(4):400-14. doi: 10.1007/s11427-017-9271-1, PMID 29675551.

Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine. 2013;8:2521-32. doi: 10.2147/IJN.S43770, PMID 23901270.

Kang S, Baskaran R, Ozlu B, Davaa E, Kim JJ, Shim BS. T1-positive Mn2+-doped multi-stimuli responsive poly(L-dopa) nanoparticles for photothermal and photodynamic combination cancer therapy. Biomedicines. 2020;8(10):417. doi: 10.3390/biomedicines8100417, PMID 33066425.

Eskiizmir G, Ermertcan AT, Nanomaterials YK. Promising structures for the management of oral cancer. Nanostruct Oral Med. 2017:511-44.

Hosu T, Tertis, Cristea. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry. 2019;5(4):55. doi: 10.3390/magnetochemistry5040055.

Chen Y, Ai K, Liu J, Sun G, Yin Q, Lu L. Multifunctional envelope-type mesoporous silica nanoparticles for PH-responsive drug delivery and magnetic resonance imaging. Biomaterials. 2015;60:111-20. doi: 10.1016/j.biomaterials.2015.05.003, PMID 25988726.

Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials. 2017;136:98-114. doi: 10.1016/j.biomaterials.2017.05.013, PMID 28525855.

Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic agents for the thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553-73. doi: 10.1039/ c4nr03482a, PMID 25212238.

Aires A, Ocampo SM, Simoes BM, Josefa Rodriguez M, Cadenas JF, Couleaud P. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology. 2016;27(6):065103. doi: 10.1088/0957-4484/27/6/065103, PMID 26754042.

Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z. Magnetic fe3o4 nanoparticles grafted with single-chain antibody (scfv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C. 2014;42:325-32. doi: 10.1016/j.msec.2014.05.041.

Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics. 2015;5(11):1249-63. doi: 10.7150/thno.11544, PMID 26379790.

Liu G, Black KL, Yu JS. Targeting brain cancer stem cells in the clinic. Stem Cells Cancer. 2009:275-86.

Herrmann IK, Urner M, Koehler FM, Hasler M, Roth-Z’graggen B, Grass RN. Blood purification using functionalized core/shell nanomagnets. Small. 2010;6(13):1388-92. doi: 10.1002/ smll.201000438, PMID 20564487.

Published

07-11-2022

How to Cite

RAMADOSS, K., VADIVEL, V., V., A., & K., L. (2022). MAGNETIC NANOPARTICLE-BASED APPROACHES IN CANCER THERAPY–A CRITICAL REVIEW. International Journal of Applied Pharmaceutics, 14(6), 21–27. https://doi.org/10.22159/ijap.2022v14i6.45064

Issue

Section

Review Article(s)

Most read articles by the same author(s)