QUALITY CONTROL ASSAY OF TWO ANTIHYPERTENSIVE REPRESENTATIVES USING RP-HPLC BASED METHODOLOGY: STRESS ASSESSMENT ON ANTIHYPERTENSIVE REPRESENTATIVES
DOI:
https://doi.org/10.22159/ijap.2022v14i6.45594Keywords:
Antihypertensive, Azilsartan, Cilnidipine, Quality control, HPLC, DegradantsAbstract
Objective: A quick simultaneous separation and quality control assay of two antihypertensive representatives, Azilsartan (AZIL) and Cilnidipine (CLIN) in bulk and tablet formulation was developed and validated using a Reverse phase (RP) HPLC method within a run time of 10 min.
Methods: All chromatographic separations of AZIL and CILN were operated on a “Supelco C18 column (250 × 4.6 mm, 5 μ)”, using a mobile phase of Na2SO4 (0.1 M, pH 4.0): methanol at 60:40 (v: v) ratio and the samples were analyzed at 239 nm. Stability assessments of AZIL and CILN were carried out as per the ICH Q1A (R2) regulation. The methodology for determining AZIL and CILN in bulk and formulations tablets was verified by adhering to International Conference on Harmonization (ICH) recommendations.
Results: Retention times of AZIL and CILN samples were 4.023 and 5.732 min, respectively, indicating a quick elution time. Over the tested range of 20–60 µg/ml for AZIL and 5–15 µg/ml for CILN determination, calibration curves have displayed linearity and satisfactory results. LOD of AZIL and CILN are 0.083 µg/ml and 0.056 µg/ml, respectively. The approach suggested herein has satisfactory precision (RSD: 0.1013% for AZIL and 0.4944% for CILN) and accuracy (recovery: 99.20 to 100.34 % for AZIL and 100.17 to 101.59 % for CILN). Furthermore, the approach has also been shown to be effective in detecting degradants of AZIL and CILN and resolving them with high resolution.
Conclusion: This approach is shown to be acceptable for the accurate quality control assay of two antihypertensive representatives, AZIL and CLIN in both bulk and tablet formulation.
Downloads
References
Ghosh S, Kumar M. Prevalence and associated risk factors of hypertension among persons aged 15-49 in India: a cross-sectional study. BMJ Open. 2019;9(12):e029714. doi: 10.1136/bmjopen-2019-029714, PMID 31848161.
Gupta R, Gaur K, S Ram CV. Emerging trends in hypertension epidemiology in India. J Hum Hypertens. 2019;33(8):575-87. doi: 10.1038/s41371-018-0117-3, PMID 30254382.
Kurjogi MM, Vanti GL, Kaulgud RS. Prevalence of hypertension and its associated risk factors in Dharwad population: A cross-sectional study. Indian Heart J. 2021;73(6):751-3. doi: 10.1016/j.ihj.2021.10.006. PMID 34695447.
Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E. Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens. 2014;32(6):1170-7. doi: 10.1097/HJH.0000000000000146, PMID 24621804.
Azilsartan medoxomil+cilnidipine.1 mg.com. 2022. Available from: https://www.1mg.com/generics/azilsartan-medoxomil-cilnidipine-509255.
Pradhan A, Tiwari A, Sethi R. Azilsartan: current evidence and perspectives in the management of hypertension. Int J Hypertens. 2019;2019:1824621. doi: 10.1155/2019/1824621, PMID 31885897.
Dargad RR, Parekh JD, Dargad RR, Kukrety S. Azilsartan: novel angiotensin receptor blocker. J Assoc Physicians India. 2016;64(3):96-8. PMID 27731574.
Chandra KS, Ramesh G. The fourth-generation calcium channel blocker: cilnidipine. Indian Heart J. 2013;65(6):691-5. doi: 10.1016/j.ihj.2013.11.001. PMID 24407539.
Shete MM. Cilnidipine: next-generation calcium channel blocker. J Assoc Physicians India. 2016;64(4):95-9. PMID 27734656.
Goda Y. A basis for pharmaceutical sciences ”quality assurance”: quality assurance of health foods, foods with health claims, and pharmaceutics. Yakugaku Zasshi. 2021;141(6):787-91. doi: 10.1248/yakushi.20-00217-2, PMID 34078783.
Shrinivasan R, Kamal Chandra J, Kumar R, Dushyant Kumar N. Stability indicating RP-HPLC method for determination of azilsartan medoxomil in bulk and its dosage form. Int J Pharm Anal Res. 2014;3(4):445-52.
Masthanamma SK, Jahnavi P. Stability indicating RP-HPLC method for determination of azilsartan medoxomil in the pharmaceutical dosage form. Res J Pharm Technol. 2014;7(2):168-72.
Sreenivasulu J, Venkata Ramana P, Sampath Kumar Reddy G, Nagaraju ChV, Thirumalai Rajan S, Eswaraiah S. A rapid novel HPLC method for estimation of eight related compounds in azilsartan kamedoxomil and identification of degradation compounds by using LC-MS. J Chromatogr Sci. 2015;53(9):1463-74. doi: 10.1093/chromsci/bmv039, PMID 25925084.
Sohni SK, Kumar R, Akhtar M, Ranjan C, Chawla G. Development and validation of RP-HPLC method for simultaneous estimation of azilsartan medoximil and chlorthalidone in bulk form and formulation using quality by design. Int J Pharm Sci Rev Res. 2016;8(2):266-72.
Naazneen S, Sridevi A. Stability-indicating RP-HPLC method for the simultaneous estimation of azilsartan medoxomil and chlorthalidone in solid dosage forms. Int J Pharm Pharm Sci. 2014;6(6):236-43.
Aher SS, Saudagar RB, Kothari H. Development and validation of RP-HPLC method for simultaneous estimation of azilsartan medoxomil and chlorthalidone in bulk and tablet dosage form. Int J Curr Pharm Sci. 2018;10(6):21-4. doi: 10.22159/ ijcpr.2018v10i6.30967.
Minase AS, Dole MN, Sawant SD. Development and validation of an analytical method for simultaneous estimation of cilnidipine and olmesartan medoxomil in bulk and tablet dosage form by RP-HPLC. Int J Pharm Pharm Sci. 2014;6(7):508-11.
Sunitha N, Marihal SC, Sravanthi SJ, Venu A, Narasimha Rao BV, Appa Rao B. Method development and validation of RP-HPLC method for the simultaneous estimation of olmesartan and cilnidipine in bulk and formulations. Int J Pharm Res Allied Sci. 2015;4(3):127-35.
Pawar VT, Pawar SV, More HN, Kulkarni AS, Gaikwad DT. RP-HPLC method for simultaneous estimation of cilnidipine and chlorthalidone. Res J Pharm Technol. 2017;10(11):3990-6. doi: 10.5958/0974-360X.2017.00724.7.
Satyavati D, Kumar AG, Latha MB, Madhukar A. Validated RP-HPLC method for simultaneous estimation of chlorthalidone and cilnidipine in API and tablet dosage form. J Sci Res Pharm. 2018;7(11):124-9. doi: 10.5281/zenodo.1489499.
Patel SN, Hinge MA, Bhanushali VM. Development and validation of a UV spectrophotometric method for simultaneous determination of cilnidipine and chlorthalidone. J Pharm Res. 2015;9(1):41-5.
Eswarudu MM, Lakshmana Rao A, Vijay K. Bioanalytical method development and validation for simultaneous determination of chlorthalidone and cilnidipine drugs in human plasma by RP-HPLC. Int J Res Pharm Chem. 2019;9(1):33-44. doi: 10.33289/IJRPC.9.1.2019.921.
Sawaikar L, Kapupara P. Development and validation of a stability indicating RP-HPLC method for the estimation of chlorthalidone and cilnidipine in combined pharmaceutical dosage form. Res J Pharm Technol. 2020;13(5):2376-80. doi: 10.5958/0974-360X.2020.00427.8.
Jain JJ, Patel SA. Development and validation of spectrophotometric method for simultaneous estimation of azilsartan kamedoxomil and cilnidipine in the synthetic mixture. World J Pharm Res. 2018;7(8):948-58. doi: 10.20959/wjpr20188-11863.
Jani RJ, Patel SA. Spectrophotometric method for simultaneous estimation of azilsartan kamedoxomil and cilnidipine in the synthetic mixture. Int J Res Pharm Pharm Sci. 2018;3(2):86-90.
International conference on the harmonization. ICH Stability testing of new drug substances and products. Vol. Q1A(R2); 2003.
International conference on the harmonization. ICH harmonized tripartite guideline. Validation of analytical procedures: text and methodology. Vol. Q2(R1); 2005.
Andhale SM, Nikalje AP. Simultaneous estimation of azilsartan and cilnidipine in bulk by RP-HPLC and assessment of its applicability in marketed tablet dosage form. Int J Appl Pharm. 2022;14(2):116-23. doi: 10.22159/ijap.2022v14i1.42208.
Boughtflower B, Taylor N, Brooke D. The design and use of a simple system suitability test mix for generic reverse-phase high-performance liquid chromatography-mass spectrometry systems and the implications for automated system monitoring using global software tracking. 31Mutton I. J Chromatogr. 2011;23:3711-7. doi: 10.1016/j.A.2011.04.033
Vessman J, Stefan RI, van Staden JF, Danzer K, Lindner W, Burns DT. Selectivity in analytical chemistry (IUPAC Recommendations 2001). Pure Appl Chem. 2001;73(8):1381-6. doi: 10.1351/pac200173081381.
Rode DM, Rao NN. A review on development and validation of stability indicating HPLC methods for analysis of acidic drugs. Int J Curr Pharm Sci. 2019;11(4):22-33. doi: 10.22159/ijcpr.2019v11i4.34939.
Rao PV, Rao AL, Svum P. Development and validation of new stability indicating reversed-phase high-performance liquid chromatography method for simultaneous determination of metformin hydrochloride and ertugliflozin in bulk and pharmaceutical dosage form. Asian J Pharm Clin Res 2019;12(1):28938. doi: 10.22159/ajpcr.2019.v12i1.28938.
Leendert V, Kenneth K, Patrick DW, Lies H, Herman VL, Kristof D. Statistical procedures for the determination of linearity, detection limits and measurement uncertainty: A deeper look into SPE-LC-Orbitrap mass spectrometry of pharmaceuticals in wastewater. J Hazard Mater. 2017;323A:2-10. doi: 10.1016/j.jhazmat.2016.05.077.
Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29Suppl 1:S49-52. PMID 18852857.
Betz JM, Brown PN, Roman MC. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia. 2011;82(1):44-52. doi: 10.1016/j.fitote.2010.09.011, PMID 20884340.
Vander Heyden Y, Jimidar M, Hund E, Niemeijer N, Peeters R, Smeyers-Verbeke J. Determination of system suitability limits with a robustness test. J Chromatogr A. 1999;845(1-2):145-54. doi: 10.1016/S0021-9673(99)00328-3.
Published
How to Cite
Issue
Section
Copyright (c) 2022 GANDHI SANTOSH KUMAR, BADAL KUMAR MANDAL
This work is licensed under a Creative Commons Attribution 4.0 International License.