DESIGN AND OPTIMIZATION OF FLUCONAZOLE-LOADED PHARMACOSOME GEL FOR ENHANCING TRANSDERMAL PERMEATION AND TREATING FUNGAL INFECTIONS THROUGH BOX-BEHNKEN DESIGN
DOI:
https://doi.org/10.22159/ijap.2023v15i1.46413Keywords:
Fluconazole, Pharmacosomes, Carrier drug delivery, Design expert, Box behenken design, Transdermal gelAbstract
Objective: The objective of the selected study was to develop and statistically optimize fluconazole (drug) loaded pharmacosomes (carrier) to enhance transdermal permeation by incorporating into gel base and to treat fungal infections by selecting the Box-Behnken model.
Methods: Fluconazole is an antifungal drug which belongs to BCS class-II with high permeability and choice for topical drug delivery. In the study, the levels of the lecithin (lipid), dichloromethane and DMSO are selected as independent variables were varied to study the influence on particle size, % entrapment efficiency and in vitro drug release as dependent variables. Factorial designs through software Design expert version 13 (Box-Behnken design) is applied for this study and the optimization process was carried out using the desirability plots and point prediction techniques.
Results: Results of the study with the application of a design expert shows that the optimized drug-loaded pharmacosomes with vesicle size of 158.87±0.56 nm as predicted and zeta potential of-30.6mV indicating good stability of the formulation, entrapment efficiency of 90.6±1.12% and in vitro drug release of 97.59±1.84% respectively. The optimized formulation loaded into gel base and compared with the marketed gel formulation. All the evaluation parameters confirmed that the physical mixture of drug and excipients was compatible without any interactions.
Conclusion: Through obtained results, it’s concluded that; the independent variable plays a crucial role in optimizing formulation. Study data provided strong evidence that the optimized vesicular formulation through Box-Behnken factorial design can be potentially useful as a drug carrier for loading drug of selected category for enhancing transdermal delivery.
Downloads
References
Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019;563:293-303. doi: 10.1016/j.ijpharm.2019.04.001. PMID 30951860.
Morilla MJ, Romero EL. Ultradeformable phospholipid vesicles as a drug de-livery system: a review. Res Rep Transder Drug Deliv. 2015;4:55-69.
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm. 2007 Mar 6;332(1-2):1-16. doi: 10.1016/j.ijpharm.2006.12.005. PMID 17222523.
Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000 Apr 3;65(3):403-18. doi: 10.1016/s0168-3659(99)00222-9, PMID 10699298.
Monti D, Egiziano E, Burgalassi S, Tampucci S, Terreni E, Tivegna S, Chetoni P. Influence of a combination of chemical enhancers and iontophoresis on in vitro transungual permeation of nystatin. AAPS PharmSciTech. 2018 May;19(4):1574-81. doi: 10.1208/s12249-018-0977-4.
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017 Oct 5;12:7291-309. doi: 10.2147/IJN.S146315. PMID 29042776, PMCID PMC5634382.
Semalty A, Semalty M, Rawat BS, Singh D, Rawat MS. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv. 2009 Jun;6(6):599-612. doi: 10.1517/17425240902967607, PMID 19519287.
Kasar PM, Kale K, Phadtare DG. Formulation and evaluation of topical antifungal gel containing itraconazole. Int J Curr Pharm Sci 2018;10(4). doi: 10.22159/ijcpr.2018v10i4.28470.
Raphael AP, Garrastazu G, Sonvico F, Prow TW. Formulation design for topical drug and nanoparticle treatment of skin disease. Ther Deliv. 2015 Feb;6(2):197-216. doi: 10.4155/tde.14.106, PMID 25690087.
El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER. Fluconazole-loaded solid lipid nanoparticles topical gel for the treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018 Nov;25(1):78-90. doi: 10.1080/10717544.2017.1413444, PMID 29239242.
NiyazBasha B, Kalyani P, Divakar G. Formulation and evaluation of gel containing fluconazole-antifungal. Int J Drug Dev Res. 2011;3:109-12.
Hardikar SR, Mulla SS. Optimization of formulation of solid dispersion of furosemide by factorial design. Int J Pharm Pharm Sci. 2020 Apr;12(4):43-8. doi: 10.22159/ijpps.2020v12i4.36428.
Yue PF, Zheng Q, Wu B, Yang M, Wang MS, Zhang HY. Process optimization by response surface design and characterization study on geniposide pharmacosomes. Pharm Dev Technol. 2012 Jan-Feb;17(1):94-102. doi: 10.3109/10837450.2010.516439, PMID 20919929.
Gupta N, Jain S. Designing and optimization of naproxen sodium deformable vesicular systems through factorial design: box behenken model. Int J App Pharm. 2021;13:190-7. doi: 10.22159/ijap.2021v13i2.40398.
Deka T, Das MK, Das S, Das P, Singha LR. Box-behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in an experimental animal model. Int J App Pharm. 2022;14(6):148-66. doi: 10.22159/ijap.2022v14i6.45867.
Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel nonionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 23 factorial design and in vivo evaluation in rabbits. Drug Deliv. 2016;23(5):1608-22. doi: 10.3109/10717544.2015.1132797, PMID 26758033.
Singh MP, Nagori BP, Shaw NR. Formulation development and evaluation of topical gel formulations using different gelling agents and its comparison with marketed gel formulation. Int J Pharm Erud. 2013;3:1-10.
Grace XF, KS, SS. Development of terminalia chebula loaded ethosomal gel for transdermal drug delivery. Asian J Pharm Clin Res 2018;11(12). doi: 10.22159/ajpcr.2018.v11i12.20764.
Sudipta DA, Arnab SA, Ananya BO. Design, development and evaluation of fluconazole topical gel. Asian J Pharm Clin Res. 2015;8:132-13.
Jain S, Padsalg BD, Patel AK, Mokale V. Formulation, development and evaluation of fluconazole gel in various polymer bases. Asian J Pharm. 2017;1:3-8. doi: 10.22377/ajp.v1i1.742.
Loveleenpreet K, Prabhjot K. Formulation and evaluation of topical gel of meloxicam. Int J Res Pharm Chem. 2014;4:619-23.
Das S, Samanta A, Bose A. Design, development and evaluation of fluconazole topical gel. Asian J Pharm Clin Res. 2015;8:132-5.
Kasar PM, Kale K, Phadtare DG. Formulation and evaluation of topical antifungal gel containing itraconazole. Int J Curr Pharm Sci. 2018;10(4):71-4. doi: 10.22159/ijcpr.2018v10i4.28470.
Kasar PM, Kale K, Phadtare DG. Formulation and evaluation of topical antifungal gel containing itraconazole. Int J Curr Pharm Sci 2018;10(4). doi: 10.22159/ijcpr.2018v10i4.28470.
Kikwai L, Babu RJ, Prado R, Kolot A, Armstrong CA, Ansel JC. In vitro and in vivo evaluation of topical formulations of spantide II. AAPS PharmSciTech. 2005 Oct 31;6(4):E565-72. doi: 10.1208/pt060471, PMID 16408858, PMCID PMC2750604.
Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001 Jun 11;48(2-3):139-57. doi: 10.1016/s0169-409x(01)00112-0, PMID 11369079.
Costa P, Sousa Lobo JM. Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Dev Ind Pharm. 2003 Jan;29(1):89-97. doi: 10.1081/ddc-120016687, PMID 12602496.
Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents. 2014 May;43(5):395-402. doi: 10.1016/j.ijantimicag.2013.12.009. PMID 24503221.
Bhalaria MK, Naik S, Misra AN. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol. 2009 May;47(5):368-75. PMID 19579803.
Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y. Development of transethosomes formulation for dermal fisetin delivery: box-behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol. 2018;46Suppl:755-65. doi: 10.1080/21691401.2018.1469025, PMID 29730964.
Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1-2):329-40. doi: 10.1016/j.ijpharm.2015.03.033. PMID 25796122.
Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58-71. doi: 10.1208/s12249-016-0489-z, PMID 26868380.
Alhakamy NA, Aldawsari HM, Ali J, Gupta DK, Warsi MH, Bilgrami AL. Brucine-loaded transliposomes nanogel for topical delivery in skin cancer: statistical optimization, in vitro and dermatokinetic evaluation. 3 Biotech. 2021;11(6):288. doi: 10.1007/s13205-021-02841-5, PMID 34109091.
Muralikrishna P, Babu AK, Mamatha P. Formulation and optimization of Ceritinib loaded nanobubbles by box-Behnken design. Int J Appl Pharm. 2022;14:219-26.
Vyas J, Vyas P, Raval D, Paghdar P. Development of topical niosomal gel of benzoyl peroxide. Nanotechnology. 2011;2011:1-6. doi: 10.5402/2011/503158.
Azizah N, Sagita E, Iskandarsyah I. In vitro penetration tests of transethosome gel preparations containing capsaicin. Int J Appl Pharm. 2017;9:116. doi: 10.22159/ijap.2017.v9s1.68_75.
Baghel S, Nair VS, Pirani A, Sravani AB, Bhemisetty B, Ananthamurthy K. Luliconazole-loaded nanostructured lipid carriers for topical treatment of superficial tinea infections. Dermatol Ther. 2020 Nov;33(6):e13959. doi: 10.1111/dth.13959, PMID 32618400.
Liu Y, Tortora G, Ryan ME, Lee HM, Golub LM. Potato dextrose agar antifungal susceptibility testing for yeasts and molds: evaluation of phosphate effect on antifungal activity of CMT-3. Antimicrob Agents Chemother. 2002 May;46(5):1455-61. doi: 10.1128/AAC.46.5.1455-1461.2002, PMID 11959582.
Published
How to Cite
Issue
Section
Copyright (c) 2023 S. NAVEENTAJ, Y. INDIRA MUZIB, R. RADHA
This work is licensed under a Creative Commons Attribution 4.0 International License.