A SERIES OF SIMPLE DECONTAMINATION METHODS OF BACTERIAL FLORA FOUND ON MUSICAL WIND INSTRUMENTS
DOI:
https://doi.org/10.22159/ijap.2022.v14s5.21Keywords:
Mouthpieces, Musical, Cleaning, Chloroxylenol, Hot waterAbstract
Objective: This study was aimed to compare the efficacy of cleaning techniques using hot water treatment soap containing 2% triclosan and chemical antiseptics in reducing the bacterial contamination observed on shared musical wind instruments.
Methods: The trumpet, mellophone, trombone, and tuba were evaluated in this study. To count the initial bacterial colonies on the instrument, the total amount of bacteria adhered to it was extracted using the swab procedure. The mouthpieces were immersed in hot water at a temperature of 100 °C for 5 min and then were soaked in soap that contained 2% triclosan to achieve the effect of decontamination. Then the survival colonies were counted. As a series of decontamination technique, this study also examined the disinfection ability of phenol, chloroxylenol, povidone-iodine, and 70% alcohol utilizing the Rideal Walker method.
Results: When compared to liquid soap (50.30-91.67%), the cleaning procedure that uses immersion in hot water of 100 °C for 5 min greatly lowers the quantity of bacteria (91.85-99.91%). However, due to their huge surface area, tuba mouthpieces were the most straightforward to sterilize using both techniques. The highest phenol coefficient value was shown by chloroxylenol; however, all tested disinfectants showed stronger antibacterial activity than 1% phenol.
Conclusion: The mouthpieces of shared wind instruments can be cleaned quickly, easily, and effectively by immersing them in hot water at a temperature of 100 °C for 5 min. However, chloroxylenol has the strongest ability to eradicate bacteria from the instrument's mouthpiece.
Downloads
References
Kanamori H, Rutala WA, Weber DJ. The role of patient care items as a fomite in healthcare-associated outbreaks and infection prevention. Clin Infect Dis. 2017;65(8):1412-9. doi: 10.1093/cid/cix462, PMID 28520859.
Allan M, Atuhaire C, Nathan M, Ejobi F, Cumber SN. Bacterial contamination of Ugandan paper currency notes possessed by food vendors around Mulago Hospital complex, Uganda. Pan Afr Med J. 2018;31:143. doi: 10.11604/pamj.2018.31.143.16738, PMID 31037203.
Inglis TJJ, Spittle C, Carmichael H, Downes J, Chiari M, McQueen Mason A. Legionnaires’ disease outbreak on a merchant's vessel, Indian Ocean, Australia, 2015. Emerg Infect Dis. 2018;24(7):1345-8. doi: 10.3201/eid2407.171978, PMID 29912714.
He R, Gao L, Trifonov M, Hong J. Aerosol generation from different wind instruments. J Aerosol Sci. 2021;151:105669. doi: 10.1016/j.jaerosci.2020.105669, PMID 32952210.
Abraham A, He R, Shao S, Kumar SS, Wang C, Guo B. Risk assessment and mitigation of airborne disease transmission in orchestral wind instrument performance. J Aerosol Sci. 2021;157:1-19. doi: 10.1016/j.jaerosci.2021.105797.
Moore TR, Cannaday AE. Do ”brassy” sounding musical instruments need increased safe distancing requirements to minimize the spread of COVID-19? J Acoust Soc Am. 2020;148(4):2096. doi: 10.1121/10.0002182, PMID 33138536.
Glass RT, Conrad RS, Kohler GA, Bullard JW. Evaluation of the microbial flora found in woodwind and brass instruments and their potential to transmit diseases. Gen Dent. 2011;59(2):100-7; quiz 108. PMID 21903519.
King J, Richardson M, Quinn AM, Holme J, Chaudhuri N. Bagpipe lung; A new type of interstitial lung disease? Thorax. 2017;72(4):380-2. doi: 10.1136/thoraxjnl-2016-208751, PMID 27552781.
Okoshi K, Minami T, Kikuchi M, Tomizawa Y. Musical instrument-associated health issues and their management. Tohoku J Exp Med. 2017;243(1):49-56. doi: 10.1620/tjem.243.49, PMID 28931767.
Marshall B, Levy S. Microbial contamination of musical wind instruments. Int J Environ Health Res. 2011;21(4):275-85. doi: 10.1080/09603123.2010.550033, PMID 21745020.
Marshall B, Levy S. Microbial contamination of musical wind instruments. Int J Environ Health Res. 2011;21(4):275-85. doi: 10.1080/09603123.2010.550033, PMID 21745020.
Tortora GJ, Funke BR, Case CL. Microbiology an introduction. 6th ed. Reading: Addison Wesley Longman; 1997.
Mwambete KD, Lyombe F. Antimicrobial activity of medicated soaps commonly used by Dar es Salaam residents in Tanzania. Indian J Pharm Sci. 2011;73(1):92-8. doi: 10.4103/0250-474X.89765, PMID 22131630.
Schmid Hempel P, Frank SA. Pathogenesis, virulence, and infective dose. PLOS Pathog. 2007;3(10):1372-3. doi: 10.1371/journal.ppat.0030147, PMID 17967057.
Pettit F, Lowbury EJL. Survival of wound pathogens under different environmental conditions. J Hyg (Lond). 1968;66(3):393-406. doi: 10.1017/s0022172400041267, PMID 4971026.
Marshall BM, Flynn PA, Kamely D, Levy SB. Survival of Escherichia coli with and without col E1::Tn5 after aerosol dispersal in a laboratory and a farm environment. Appl Environ Microbiol. 1988;54:1776-83.
Tagg JR, Ragland NL. Applications of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphylococci. J Appl Bacteriol. 1991;71(4):339-42. doi: 10.1111/j.1365-2672.1991.tb03797.x, PMID 1960108.
Neely AN, Maley MP. Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol. 2000;38(2):724-6. doi: 10.1128/JCM.38.2.724-726.2000, PMID 10655374.
Pelczar MJ, Chan ECS, Mikrobiologi DD, editors 2. Jakarta: Universitas Indonesia; 1988.
Tal T. Developmental exposure to triclosan alters microbiota community structure and locomotor activity in larval. Baltimore, MA: Zebrafish society of Toxicology; 2017.
Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol. 2002;92Suppl:55S-64S. doi: 10.1046/j.1365-2672.92.5s1.8.x, PMID 12000613.
White DG, McDermott PF. Biocides, drug resistance and microbial evolution. Curr Opin Microbiol. 2001;4(3):313-7. doi: 10.1016/s1369-5274(00)00209-5, PMID 11378485.
Levy SB. Antibacterial household products: cause for concern. Emerg Infect Dis. 2001;7(3)Suppl:512-15. doi: 10.3201/eid0707.017705, PMID 11485643.
Weatherly LM, Gosse JA. (Triclosan exposure, transformation, and human health effects). Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev. 2017;20(8):447-69. doi: 10.1080/10937404.2017.1399306, PMID 29182464.
Ruano M, El-Attrache J, Villegas P. Efficacy comparisons of disinfectants used by the commercial poultry industry. Avian Dis. 2001;45(4):972-7. doi: 10.2307/1592876, PMID 11785901.
Watson DW, Boohene CK, Denning SS, Stringham SM. Tank mixes: of using insecticide and disinfectant mixtures to reduce flies and bacteria. J Appl Poult Res. 2008;17(1):93-100. doi: 10.3382/japr.2007-00044.
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147-79. doi: 10.1128/CMR.12.1.147, PMID 9880479.
Choi D, Oh S. Removal of chloroxylenol disinfectant by an activated sludge microbial community. Microbes Environ. 2019;34(2):129-35. doi: 10.1264/jsme2.ME18124, PMID 30799319.
Eggers M, Koburger Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther. 2018;7(2):249-59. doi: 10.1007/s40121-018-0200-7, PMID 29633177.
Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology. 2006;212Suppl 1:119-23. doi: 10.1159/000089211, PMID 16490989.
Wood A, Payne D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect. 1998;38(4):283-95. doi: 10.1016/s0195-6701(98)90077-9, PMID 9602977.
Al-Sayah MH. Chemical disinfectants of COVID-19: an overview. J Water Health. 2020;18(5):843-8. doi: 10.2166/wh.2020.108, PMID 33095205.
Ali Y, Dolan MJ, Fendler EJ, Larson EL. Alcohols. In: Block SS, editor. Disinfection, sterilization, and preservation. Philadelphia: Lippincott Williams & Wilkins; 2001.
Morton HE. Alcohols. In: Block SS. editor. Disinfection, sterilization, and preservation. Philadelphia: Lea & Febiger; 1983.
Dagley S, Dawes EA, Morrison GA. Inhibition of growth of Aerobacter aerogenes; the mode of action of phenols, alcohols, acetone, and ethyl acetate. J Bacteriol. 1950;60(4):369-378369-79. doi: 10.1128/jb.60.4.369-379.1950, PMID 14784465.
Sykes G. The influence of germicides on the dehydrogenases of Bact. coli: I. The succinic acid dehydrogenase of Bact. coli. J Hyg (Lond). 1939;39(4):463-9. doi: 10.1017/s0022172400012109, PMID 20475509.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SRI AGUNG FITRI KUSUMA, WAHYU PURWITA SARI, DEWI RUSMIATI
This work is licensed under a Creative Commons Attribution 4.0 International License.