NANOGOLD AS A COMPONENT OF ACTIVE DRUGS AND DIAGNOSTIC AGENTS
DOI:
https://doi.org/10.22159/ijap.2023v15i4.47401Keywords:
Nanomaterials, AuNPs, Photothermotherapy, Diagnostic, Cancer therapyAbstract
Nanotechnology is a fast-growing field of science that dates back to the late 1950s. Nanoparticles can be divided into organic, inorganic, and carbon-based. An example of inorganic nanoparticles, in which relatively high hopes for the development of both pharmacy and medicine are placed, are gold nanoparticles. They possess beneficial properties, such as small size (ranging from several to several hundred nanometers), a large specific surface area to volume, and characteristic optical properties, as well they are relatively easy to synthesize with the ability to control the parameters of the final product to obtain desired sizes and shapes. Moreover, they exhibit high biocompatibility and low toxicity, which is especially important when administered internally (per os, i. v.). Several methods for the synthesis of gold nanoparticles (AuNPs) have been described in the literature, including chemical, physical, and biological methods. Microorganisms such as fungi, plants, and algae are used to produce gold nanoparticles. Due to their particle size and ability to penetrate cell membranes, gold nanoparticles are being considered as drug carriers. Many attempts have been made to attach gold nanoparticles to drugs, focusing mainly on antimicrobial and anticancer drugs. Treatment with these drugs in combination with nanoparticles is more effective than applying free drugs without the carrier. AuNPs have also been used with great success in the photothermal therapy of cancer. Additionally, work is underway to use them in diagnostics to prepare flow assays, increasing the sensitivity and specificity of the tests. Due to a large amount of scientific data on nanogold, this review focuses on presenting methods for obtaining gold nanoparticles and approximating their applications in areas of medical science.
Downloads
References
Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK, Beuerman RW. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003-37. doi: 10.1039/C5RA19388E.
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel). 2015 Oct 29;8(11):7278-308. doi: 10.3390/ma8115377, PMID 28793638. PMCID 5458933.
Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1-16. doi: 10.1155/2011/270974.
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019;53. doi: 10.1016/j.jddst.2019.101174.
Sadiku MNO, Ashaolu TJ, Ajayi Majebi A, Musa SM. Future of nanotechnology. International Journal of Scientific Advances. 2021;2(2):1. doi: 10.51542/ijscia.v2i2.9.
Alanazi FK, Radwan AA, Alsarra IA. Biopharmaceutical applications of nanogold. Saudi Pharm J. 2010;18(4):179-93. doi: 10.1016/j.jsps.2010.07.002, PMID 24936133.
Salem HF, Tamam SM, Lotayef SM. Biodegradable liposomes for acyclovir-gold nanoparticles as an efficient carrier for enhanced topical delivery. Int J Pharm Pharm Sci. 2017;9(8):60-4. doi: 10.22159/ijpps.2017v9i8.17243.
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspective. J Nanobiotechnology. 2022 Jul 2;20(1):222. doi: 10.1186/s12951-022-01402-z, PMID 35778747. PMCID 9250257.
Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-80. doi: 10.1615/critrevtherdrugcarriersyst.v26.i6.10, PMID 20402623. PMCID 2885142.
Xue Y, Zhao L, Tang J, Yao C. Research progress on the application of gold magnetic nanocomposite in biomedicine. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014 Apr;31(2):462-6. PMID 25039160.
Kumar P, Roy I. Applications of gold nanoparticles in clinical medicine. Int J Pharm Pharm Sci. 2016;8(7):9-16.
Freitas de Freitas L, Varca GHC, Dos Santos Batista JG, Benevolo Lugao A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials (Basel). 2018;8(11). doi: 10.3390/nano8110939, PMID 30445694.
Polte J. Fundamental growth principles of colloidal metal nanoparticles–a new perspective. Cryst Eng Comm. 2015;17(36):6809-30. doi: 10.1039/C5CE01014D.
Daruich De Souza C, Ribeiro Nogueira B, Rostelato MECM. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J Alloys Compd. 2019;798:714-40. doi: 10.1016/j.jallcom.2019.05.153.
Chaudhary A, Garg S. siRNA delivery using polyelectrolyte-gold nanoassemblies in neuronal cells for BACE1 gene silencing. Mater Sci Eng C Mater Biol Appl. 2017;80:18-28. doi: 10.1016/j.msec.2017.05.101, PMID 28866154.
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a two-phaseliquid–liquid system. J Chem Soc Chem Commun. 1994;7(7):801-2. doi: 10.1039/C39940000801.
Scarabelli L, Sanchez Iglesias A, Perez Juste J, Liz Marzan LM. A ”tips and tricks” practical guide to the synthesis of gold nanorods. J Phys Chem Lett. 2015;6(21):4270-9. doi: 10.1021/acs.jpclett.5b02123, PMID 26538043.
Uson L, Sebastian V, Arruebo M, Santamaria J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem Eng J. 2016;285:286-92. doi: 10.1016/j.cej.2015.09.103.
Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small. 2005 May;1(5):517-20. doi: 10.1002/smll.200400053, PMID 17193479.
Lakshmi VJ, Kannan KP. Biosynthesis of gold nanoparticles by biosorption using Neosartorya udagawae: characterization and in vitro evaluation. Int J Pharm Pharm Sci. 2016;8(11):108-13. doi: 10.22159/ijpps.2016v8i11.13665.
Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. 2019;12(8):2914-25.
Ogi T, Saitoh N, Nomura T, Konishi Y. Room-temperature synthesis of gold nanoparticles and nanoplates using shewanella algae cell extract. J Nanopart Res. 2010 Sep 1;12(7):2531-9. doi: 10.1007/s11051-009-9822-8.
Senapati S, Syed A, Moeez S, Kumar A, Ahmad A. Intracellular synthesis of gold nanoparticles using alga tetraselmis kochinensis. Mater Lett. 2012;79:116-8. doi: 10.1016/j.matlet.2012.04.009.
Paul B, Bhuyan B, Purkayastha DD, Dhar SS. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J Photochem Photobiol B. 2016;154:1-7. doi: 10.1016/j.jphotobiol.2015.11.004, PMID 26590801.
Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine. 2020;15:9823-57. doi: 10.2147/IJN.S279094, PMID 33324054. PMCID 7732174.
Habiba K, Makarov V, Weiner B, Morell G. Fabrication of nanomaterials by pulsed laser synthesis; 2014. p. 263-91.
Rane AV, Kanny K, Abitha VK, Thomas S. editors. Methods for synthesis of nanoparticles and fabrication of Nanocomposites; 2018.
Kumari Y, Kaur G, Kumar R, Singh SK, Gulati M, Khursheed R. Gold nanoparticles: new routes across old boundaries. Adv Colloid Interface Sci. 2019;274:102037. doi: 10.1016/j.cis.2019.102037, PMID 31655366.
Hatakeyama Y, Onishi K, Nishikawa K. Effects of sputtering conditions on the formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011;1(9):1815-21. doi: 10.1039/c1ra00688f.
Veith GM, Lupini AR, Pennycook SJ, Villa A, Prati L, Dudney NJ. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catal Today. 2007;122(3-4):248-53. doi: 10.1016/j.cattod.2007.01.010.
Veith GM, Lupini AR, Pennycook SJ, Ownby GW, Dudney NJ. Nanoparticles of gold on-AlO produced by dc magnetron sputtering. J Catal. 2005;231(1):151-8. doi: 10.1016/j.jcat.2004.12.008.
Jaworek A, Sobczyk A, Krupa A, Lackowski M, Czech T. Electrostatic deposition of nanothin films on metal substrate. Bull Pol Acad Sci Tech Sci. 2009;57(1):63-70. doi: 10.2478/v10175-010-0106-3.
Perez Tijerina E, Mejia Rosales S, Inada H, Jose Yacaman M. Effect of temperature on AuPd nanoparticles produced by inert gas condensation. J Phys Chem C. 2010;114(15):6999-7003. doi: 10.1021/jp101003g.
Hsieh TF, Chuang CC, Chou YC, Shu CM. Fabrication of nanoparticles on vertically aligned multi-wall carbon nanotubes by e-beam evaporation. Mater Des. 2010;31(4):1684-7. doi: 10.1016/j.matdes.2009.02.030.
Njoki PN, Lim IS, Mott D, Park HY, Khan B, Mishra S. Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C. 2007;111(40):14664-9. doi: 10.1021/jp074902z.
Toma H, Zamarion V, Toma S, Araki K. ChemInform abstract: the coordination chemistry at gold nanoparticles. Rev J Braz Chem Soc. 2010;21:1158-76.
Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega. 2019;4(1):242-56. doi: 10.1021/acsomega.8b03227.
Jia Y, Ma B, Wei X, Qian Z. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett. 2017;28(4):691-702. doi: 10.1016/j.cclet.2017.01.021.
Faa G, Gerosa C, Fanni D, Lachowicz JI, Nurchi VM. Gold–old drug with new potentials. Curr Med Chem. 2018;25(1):75-84. doi: 10.2174/0929867324666170330091438, PMID 28359231.
Alanazi FK, Radwan AA, Alsarra IA. Biopharmaceutical applications of nanogold. Saudi Pharm J. 2010 Oct;18(4):179-93. doi: 10.1016/j.jsps.2010.07.002, PMID 24936133. PMCID PMC4052511.
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017 Aug 31;22(9). doi: 10.3390/molecules22091445, PMID 28858253. PMCID 6151763.
Yang C, Uertz J, Chithrani DB. Colloidal gold-mediated delivery of bleomycin for improved outcome in chemotherapy. Nanomaterials (Basel). 2016;6(3):48. doi: 10.3390/nano6030048, PMID 28344305.
Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5(5):3679-92. doi: 10.1021/nn200007z, PMID 21462992.
Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee Moghaddam R. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275-300. doi: 10.2147/IJN.S233789, PMID: 32021180. PMCID 6970630.
Zhao Y, Jiang X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale. 2013;5(18):8340-50. doi: 10.1039/c3nr01990j, PMID 23893008.
Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters. 2009 Apr 21;4(8):794-801. doi: 10.1007/s11671-009-9316-8, PMID: 20596384. PMCID 2894127.
Bhattacharya D, Saha B, Mukherjee A, Ranjan Santra C, Karmakar P. Gold nanoparticles conjugated antibiotics: stability and functional evaluation. Nanosci Nanotechnol. 2012;2(2):14-21. doi: 10.5923/j.nn.20120202.04.
Huh AJ, Kwon YJ. Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics-resistant era. J Controlled Release. 2011 Dec 10;156(2):128-45. doi: 10.1016/j.jconrel.2011.07.002, PMID: 21763369.
Lee O, Jeong SH, Shin WU, Lee G, Oh C, Son SW. Influence of surface charge of gold nanorods on skin penetration. Skin Res Technol. 2013 Feb;19(1):e390-6. doi: 10.1111/j.1600-0846.2012.00656.x, PMID: 23293910.
Kumar D, Utreja P, Verma S, Rahman M. Use of nanoparticles in medicine. Curr Biochem Eng. 2019;6:07/30.
Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm. 2018 Jun 4;15(6):2194-205. doi: 10.1021/acs.molpharmaceut.8b00047, PMID: 29701979.
Jiang Z, Li Y, Liang A, Qin A. A sensitive and selective immuno-nanogold resonance-scattering spectral method for the determination of trace penicillin G. Luminescence. 2008;23(3):157-62. doi: 10.1002/bio.1026, PMID 18431719.
Luo Y, He L, Zhan S, Wu Y, Liu L, Zhi W. Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. J Agric Food Chem. 2014;62(5):1032-7. doi: 10.1021/jf403566e, PMID 24400926.
Chavan C, Kamble S, Murthy AVR, Kale SN. Ampicillin-mediated functionalized gold nanoparticles against ampicillin-resistant bacteria: strategy, preparation and interaction studies. Nanotechnology. 2020;31(21):215604. doi: 10.1088/1361-6528/ab72b4, PMID 32018229.
Nawaz A, Ali SM, Rana NF, Tanweer T, Batool A, Webster TJ. Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: an in vivo assessment. Nanomaterials (Basel). 2021;11(11). doi: 10.3390/nano11113152, PMID 34835916.
Mohammed Fayaz A, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT. Vancomycin bound biogenic gold nanoparticles: a different perspective for the development of anti-VRSA agents. Process Biochem. 2011;46(3):636-41. doi: 10.1016/j.procbio.2010.11.001.
Nirmala Grace A, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-a brief study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1):63-70. doi: 10.1016/j.colsurfa.2006.10.024.
Nair K KL, Jagadeeshan S, Nair SA, Kumar GS. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine. 2011;6:1685-97. doi: 10.2147/IJN.S20165, PMID: 21980233. PMCID 3184929.
Roshmi T, Soumya KR, Jyothis M, Radhakrishnan EK. Effect of bio-fabricated gold nanoparticle-based antibiotic conjugates on the minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bulletin. 2015 2015;48(1-2):63-71. doi: 10.1007/s13404-015-0162-4.
Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces. 2022;215:112481. doi: 10.1016/j.colsurfb.2022.112481, PMID 35453063.
Zhang D, Zhang J, Zeng J, Li Z, Zuo H, Huang C. Nano gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. Journal of Biomedical Nanotechnology. 2019 Feb 1;15(2):288-300. doi: 10.1166/jbn.2019.2682, PMID: 30596551.
Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle-based photothermal therapy: development and application for effective cancer treatment. Sustain Mater Technol. 2019;22:e00109. doi: 10.1016/j.susmat.2019.e00109.
Herranz F, Almarza E, Rodriguez I, Salinas B, Rosell Y, Desco M. The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech. 2011 Jul;74(7):577-91. doi: 10.1002/jemt.20992, PMID: 21484943. PMCID 3422774.
Sun J, Xianyu Y, Jiang X. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev. 2014;43(17):6239-53. doi: 10.1039/c4cs00125g, PMID 24882068.
Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nnanoparticles for diagnostics: advances towards points of care. Diagnostics (Basel). 2016;6(4). doi: 10.3390/diagnostics6040043, PMID 27879660.
Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. Biomicrofluidics. 2019 Nov;13(6):061503. doi: 10.1063/1.5121200, PMID: 31768197. PMCID 6870548.
Yu Y, Wu Y, Liu J, Zhan Y, Wu D. Ultrasmall dopamine-coated nanogolds: preparation, characteristics, and CT imaging. J Exp Nanosci. 2016;11:S1-S11. doi: 10.1080/17458080.2015.1102343, PMID 27366201.
Chiang MC, Nicol CJB, Lin CH, Chen SJ, Yen C, Huang RN. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem Int. 2021;145:104992. doi: 10.1016/j.neuint.2021.104992, PMID 33609598.
Chiang MC, Nicol CJB, Cheng YC, Yen C, Lin CH, Chen SJ. Nanogold neuroprotection in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Neuroscience. 2020 May 21;435:44-57. doi: 10.1016/j.neuroscience.2020.03.040, PMID: 32229231.
Mohacek Grosev V, Brljafa S, Skrabic M, Maric I, Blazek Bregovic V, Amendola V. Glucosamine to gold nanoparticles binding studied using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2022;264:120326. doi: 10.1016/j.saa.2021.120326, PMID 34481250.
Yang CW, Hu Y, Yuan L, Zhou HZ, Sheng GP. Selectively tracking nanoparticles in aquatic plant usingcore–shell nanoparticle-enhanced Raman spectroscopy imaging. ACS Nano. 2021;15(12):19828-37. doi: 10.1021/acsnano.1c07306, PMID 34851615.
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979. doi: 10.3390/ijms19071979, PMID 29986450.
Lopez Valls M, Escalona Noguero C, Rodriguez Diaz C, Pardo D, Castellanos M, Milan Rois P. Cascade: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta. 2022 May 1;1205:339749. doi: 10.1016/j.aca.2022.339749, PMID: 35414398, PMCID 8939626.
Cui X, Li J, Li Y, Liu M, Qiao J, Wang D. Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. Spectrochim Acta A Mol Biomol Spectrosc. 2022;266:120432. doi: 10.1016/j.saa.2021.120432, PMID 34607092.
Lin M, Pei H, Yang F, Fan C, Zuo X. Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Adv Mater. 2013;25(25):3490-6. doi: 10.1002/adma.201301333, PMID 23977699.
Namdari M, Negahdari B, Cheraghi M, Aiyelabegan HT, Eatmadi A. Cardiac failure detection in 30 min: new approach based on gold nanoparticles. J Microencapsulation. 2017;34(2):132-9. doi: 10.1080/02652048.2017.1296900, PMID 28264603.
Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology. 2009;4(10):634-41. doi: 10.1038/nnano.2009.242, PMID 19809453.
Pulit Prociak J, Grabowska A, Chwastowski J, Majka TM, Banach M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf B Biointerfaces. 2019 Nov 1;183:110416. doi: 10.1016/j.colsurfb.2019.110416, PMID: 31398622.
Ahmad T, Iqbal J, Bustam MA, Irfan M, Anwaar Asghar HM. A critical review on photosynthesis of gold nanoparticles: issues, challenges and future perspectives. Journal of Cleaner Production. 2021;309. doi: 10.1016/j.jclepro.2021.127460.
Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine. 2012 Jan;8(1):46-53. doi: 10.1016/j.nano.2011.05.005, PMID: 21658475.
Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Research Letters. 2009;4(8):858-64. doi: 10.1007/s11671-009-9334-6, PMID 20596373.
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008 Sep 19;1:17-32. doi: 10.2147/nsa.s3788, PMID: 24198458. PMCID 3808249.
Farheen, Khan KMA, Ashraf GM, Khan MA, Bilgrami AL, Ashraf GM, Rizv Bilgrami MMAAL, Rizvi MMA. New horizons in the treatment of neurological disorders with tailorable gold nanoparticles. Curr Drug Metab. 2021;22(12):931-8. doi: 10.2174/1389200222666210525123416, PMID: 34036910.
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16-20. doi: 10.1021/nn900002m, PMID 19206243.
Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Research Letters. 2009 May 8;4(8):858-64. doi: 10.1007/s11671-009-9334-6, PMID: 20596373. PMCID 2894102.
Published
How to Cite
Issue
Section
Copyright (c) 2023 DAWID BURSY, MONIKA STAS, MACIEJ MILINSKI, PAWEŁ BIERNAT, RADOSŁAW BALWIERZ
This work is licensed under a Creative Commons Attribution 4.0 International License.