AUTHENTICATION OF RATTUS NORVEGICUS FAT AND OTHER ANIMAL FATS USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) AND PRINCIPAL COMPONENT ANALYSIS (PCA)

Authors

  • DWI LESTARI Faculty of Pharmacy, Universitas Andalas, Padang Sumatera Barat 25175 Indonesia, Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda Kalimantan Timur 75124 Indonesia
  • EKA SISWANTO SYAMSUL Faculty of Pharmacy, Universitas Andalas, Padang Sumatera Barat 25175 Indonesia, Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda Kalimantan Timur 75124 Indonesia
  • WIRNAWATI Faculty of Pharmacy, Universitas Andalas, Padang Sumatera Barat 25175 Indonesia, Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda Kalimantan Timur 75124 Indonesia
  • SYOFYAN SYOFYAN Faculty of Pharmacy, Universitas Andalas, Padang Sumatera Barat 25175 Indonesia
  • ABDUL ROHMAN Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
  • DACHRIYANUS HAMIDI Faculty of Pharmacy, Universitas Andalas, Padang Sumatera Barat 25175 Indonesia

DOI:

https://doi.org/10.22159/ijap.2023.v15s1.47505

Keywords:

Halal authentication, Rattus norvegicus, PCA, GC-MS

Abstract

Objective: The objective of this study was to analyze fatty acids using Gas Chromatography-Mass Spectrometry (GC-MS) in combination with chemometric Principal Component Analysis (PCA) for the authentication of Rattus norvegicus fat from other animal fats.

Methods: Extraction of fat from raw meat of Rattus norvegicus, beef, chicken, pork, and dogs using the Bligh Dyer method, then derivatized with 0.2 N NaOCH3, precipitation of sodium glycerol was carried out by adding saturated NaCl to obtain methyl esters which were then injected into the GC-MS instrument. The GC-MS data were then processed using chemometric Principal Component Analysis (PCA) to group Rattus norvegicus fat with other animal fats (beef, chicken, pork, and dog).

Results: The results of the study revealed that fatty acids in Rattus norvegicus using GC-MS produced eleven types of fatty acids, namely: Lauric acid (1,1%), Myristic acid (1,15%), Palmitic acid (21,12%), Palmitoleic acid (2,06%), Stearic acid (8,23%), Vaccenic acid (2,43%), Oleic acid (26,51%), Linoleic acid (19,19%), Arachidic acid (0,09%), and Eucosatrienoic acid (0,39%). Chemometrics Principal Component Analysis (PCA) of Rattus norvegicus fat allows it to be classified with other animal fats.

Conclusion: The Gas Chromatography-Mass Spectrometry (GC-MS) method, in combination with chemometric Principal Component Analysis (PCA), offered effective tools for the authentication of fatty acid of Rattus norvegicus.

Downloads

Download data is not yet available.

References

Rohman A, Windarsih A, Erwanto Y, Zakaria Z. Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends Food Sci Technol. 2020;101:122-32. doi: 10.1016/j.tifs.2020.05.008.

Rohman A. The employment of fourier transform infrared spectroscopy coupled with chemometrics techniques for traceability and authentication of meat and meat products. J Adv Vet Anim Res. 2019;6(1):9-17. doi: 10.5455/javar.2019.f306. PMID 31453165.

Lestari D, Rohman A, Syofyan S, Yuliana ND, Abu Bakar NKB, Hamidi D. Analysis of beef meatballs with rat meat adulteration using fourier transform infrared (FTIR) spectroscopy in combination with chemometrics. Int J Food Prop. 2022;25(1):1446-57. doi: 10.1080/10942912.2022.2083637.

Siddiqui MA, Khir MHM, Witjaksono G, Ghumman ASM, Junaid M, Magsi SA. Multivariate analysis coupled with m-svm classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using ftir spectroscopy. Foods. 2021;10(10). doi: 10.3390/foods10102405, PMID 34681455.

Rohman A, Rahayu WS, Sudjadi S, Martono S. The use of real-time polymerase chain reaction combined with specific-species primer for analysis of dog meat dna in meatball. Indones J Chem. 2021;21(1):225-33. doi: 10.22146/ijc.48930.

Septiani T. Identification of rat meatballs in a traditional market in area of Jakarta using real-time–Pcr. Indones J Halal. 2021;3:94-9.

Zha D, Xing X, Yang F. A multiplex PCR assay for fraud identification of deer products. Food Control. 2010;21(10):1402-7. doi: 10.1016/j.foodcont.2010.04.013.

Qu C, Li Y, Du S, Geng Y, Su M, Liu H. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: principles, progress and prospects. Food Res Int. 2022;161:111805. doi: 10.1016/j.foodres.2022.111805. PMID 36192950.

Ballin NZ. Authentication of meat and meat products. Meat Sci. 2010;86(3):577-87. doi: 10.1016/j.meatsci.2010.06.001. PMID 20685045.

Petron MJ, Muriel E, Timon ML, Martin L, Antequera T. Fatty acids and triacylglycerols profiles from different types of Iberian dry-cured hams. Meat Sci. 2004;68(1):71-7. doi: 10.1016/j.meatsci.2004.01.012, PMID 22062009.

Guntarti A, Prativi SR. Application method of Fourier Transform Infrared (FTIR) combined with chemometrics for analysis of rat meat (Rattus diardi) in meatballs beef. Pharmaciana. 2017;7(2):133. doi: 10.12928/pharmaciana.v7i2.4247.

IkaWidyasa YI, S, Rohman A. Detection of rat meat adulteration in meat ball formulations employing real-time PCR. Asian J Anim Sci. 2015;9(6):460-5. doi: 10.3923/ajas.2015.460.465.

Cahyadi M, Wibowo T, Pramono A, Abdurrahman ZH. A novel multiplex-PCR assay to detect three non-halal meats contained in meatball using mitochondrial 12S rRNA gene. Food Sci Anim Resour. 2020;40(4):628-35. doi: 10.5851/kosfa.2020.e40. PMID 32734269.

Chen X, Ran D, Zeng L, Xin M. Immunoassay of cooked wild rat meat by ELISA with a highly specific antibody targeting rat heat-resistant proteins. Food Agric Immunol. 2020;31(1):533-44. doi: 10.1080/09540105.2020.1740180.

Nurjuliana M, Che Man YB, Mat Hashim D, Mohamed AKS. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography-mass spectrometer with headspace analyzer. Meat Sci. 2011;88(4):638-44. doi: 10.1016/j.meatsci.2011.02.022, PMID 21420795.

Aminullah, Mardiah, Sutsuga H, Kemala T. Study of different extraction methods on fingerprint and fatty acid of raw beef fat using fourier transform infrared and gas chromatography-mass spectrometry. Open Chem. 2018;16(1):1099-105. doi: 10.1515/chem-2018-0109.

Che Man YB, Rohman A, Mansor TST. Differentiation of lard from other edible fats and oils by means of Fourier transform infrared spectroscopy and chemometrics. J Am Oil Chem Soc. 2011;88(2):187-92. doi: 10.1007/s11746-010-1659-x.

King JW, Eller FJ, Snyder JM, Johnson JH, McKeith FK, Stites CR. Extraction of fat from ground beef for nutrient analysis using analytical supercritical fluid extraction. J Agric Food Chem. 1996;44(9):2700-4. doi: 10.1021/jf960069j.

Hewavitharana GG, Perera DN, Navaratne SB, Wickramasinghe I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: a review. Arab J Chem. 2020;13(8):6865-75. doi: 10.1016/j.arabjc.2020.06.039. arabjc.2020.06.039.

Rohman A, Triyana K, Sismindari EY. Differentiation of lard and other animal fats based on triacylglycerols composition and principal component analysis. Int Food Res J. 2012;19:475-9.

Toldra F, Flores M, Aristoy MC. Major meat components. Encycl Meat Sci. 2014;1:206-11. doi: 10.1016/B978-0-12-384731-7.00057-X.

Breil C, Abert Vian M, Zemb T, Kunz W, Chemat F. ’Bligh and dyer’ and folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci. 2017;18(4):1-21. doi: 10.3390/ijms18040708, PMID 28346372.

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-7. doi: 10.1139/o59-099, PMID 13671378.

Guntarti A, Ningrum KP, Gandjar IG, Salamah N. Authentication of Sprague Dawley rats (Rattus norvegicus) fat with GC-MS (gas chromatography-mass spectrometry) combined with chemometrics. Int J App Pharm. 2021;13:134-9. doi: 10.22159/jap.2021v13i2.40130.

Salamah N, Guntarti A, Lestari PA, Gandjar IG. Fat analysis of house rat (Rattus tanezumi) in meatball using gas chromatography-mass spectrometry (GC-MS) combined with principal component analysis. Indonesian J Pharm. 2022;33:208-14. doi: 10.22146/ijp.1781.

Guntarti A, Gandjar IG, Jannah NM. Authentication of Wistar rat fats with gas chromatography-mass spectometry combined by chemometrics. Potr S J F Sci 2020;14:52-7. doi: 10.5219/1229.

Guntarti A. Authentication of dog fat with gas chromatography-mass spectroscopygas chromatography–mass spectroscopy combined with chemometrics. Int J Chem. 2018;10(4):124. doi: 10.5539/ijc.v10n4p124.

Nugraha I, Iswati Utami P, Sri Rahayu W. Analisis asam lemak daging anjing pada bakso sapi menggunakan gas chromatography mass spectrometry (GCMS) yang dikombinasikan dengan PCA (Principal Component Analysis). Indonesia Journal of Halal 2018;1(2):117. doi: 10.14710/halal.v1i2.3668.

Pebriana RB, Rohman A, Lukitaningsih E, Sudjadi. Development of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in beef sausage employing three lipid extraction systems. Int J Food Prop 2017;20:1-11. doi: 10.1080/10942912.2017.1361969.

Rohman A, Man YBC. The chemometrics approach was applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil. Chemom Intell Lab Syst. 2012;110(1):129-34. doi: 10.1016/j.chemolab.2011.10.010.

Miller JN, Miller JC, Miller RD. Statistics and chemometrics for analytical chemistry; Seven7th Ed. ed. London: Pearson Education Limited: Harlow; 2018.

Meza Marquez OG, Gallardo Velazquez T, Osorio Revilla G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci. 2010;86(2):511-9. doi: 10.1016/j.meatsci.2010.05.044, PMID 20598447.

Pomerantsev AL, Rodionova OY. Popular decision rules in SIMCA: critical review. J Chemom. 2020;34(8). doi: 10.1002/cem.3250.

Published

07-02-2023

How to Cite

LESTARI, D., SYAMSUL, E. S., WIRNAWATI, SYOFYAN, S., ROHMAN, A., & HAMIDI, D. (2023). AUTHENTICATION OF RATTUS NORVEGICUS FAT AND OTHER ANIMAL FATS USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) AND PRINCIPAL COMPONENT ANALYSIS (PCA). International Journal of Applied Pharmaceutics, 15(1), 39–44. https://doi.org/10.22159/ijap.2023.v15s1.47505

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3