SILK FIBROIN-BASED ANASTROZOLE NANOPARTICLE LOADED IN SITU INJECTABLE: DEVELOPMENT AND CHARACTERIZATION

Authors

  • ARFA NASRINE Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangaluru-575018, India https://orcid.org/0000-0001-7281-6904
  • MOHAMMED GULZAR AHMED Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangaluru-575018, India
  • SOUMYA NARAYANA Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangaluru-575018, India https://orcid.org/0000-0002-1936-6542

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47593

Keywords:

Breast cancer, Anastrozole, Silk fibroin, Nanoparticulate drug delivery system, Thermo-responsive gelling system, In situ gelling injectable, Thermo-responsive gel, Sustained release drug delivery

Abstract

Objective: The study aims to find a suitable method of developing silk fibroin-based anastrozole nanoparticles and formulate in situ injectables by loading the optimized nanoparticle formulation for the sustained release treatment of breast cancer.

Methods: The nanoparticles were formulated utilizing two different methods, solvent change and precipitation approach using silk fibroin. Prepared nanoparticles characterized in terms of size, zeta potential, polydispersity, and entrapment efficiency. The chosen optimized formulation (SF-ANS-NPs-1) was subsequently analyzed for compatibility investigations by Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, surface morphology, x-ray diffraction, transmission electron spectroscopy, cumulative drug release, and stability studies as per ICH guidelines. Followed by formulating and evaluating in situ injectable gel using pluronic F-127.

Results: A particle size of 181.70±1.3 nm was reported by the optimized SF-ANS-NPs-1 formulation. FT-IR and thermal studies confirmed the compatibility of the drug with the polymers, and x-ray diffraction studies indicated crystalline nature. Surface morphology analysis indicated nano-size particle formation. A cumulative drug release (%CDR) of 94.15% was noted at the 168th hour. The results of the stability studies were indicated to be consistent over 90 d. In situ gel formulation showed desired spreadability, sol-gel transition temperature (37±0.5 ℃), viscosity (9.37±1.2 mPa·s), desired acidic pH, and a sustained release for 21 d (98.11%) with three months accelerated stability.

Conclusion: The results suggested that the combination of anastrozole with silk fibroin in the form of nanoparticles and in situ gelling systems could be an undoubtedly effective delivery method for prolonging breast cancer therapy.

Downloads

Download data is not yet available.

References

Verma V, Hiremath RN, Basra SS, Kulkarni PC, Ghodke S. Early surgical outcomes of operable breast cancer patients based on molecular subtyping–a single-centre study. Asian J Pharm Clin Res. 2023;16:67-70. doi: 10.22159/ajpcr.2023.v16i3.46564.

Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Davies C, Godwin J, Gray R, Clarke M, Cutter D. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771-84. doi: 10.1016/S0140-6736(11)60993-8, PMID 21802721.

Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 y after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805-16. doi: 10.1016/S0140-6736(12)61963-1, PMID 23219286.

Neuner JM, Kamaraju S, Charlson JA, Wozniak EM, Smith EC, Biggers A. The introduction of generic aromatase inhibitors and treatment adherence among medicare D enrollees. J Natl Cancer Inst. 2015;107(8):1-7. doi: 10.1093/jnci/djv130, PMID 25971298.

Rukminingsih F, Andayani TM, Rahmawati F, Widayati K. Health-related quality of life in early breast cancer patients with hormone responsive. Int J Pharm Pharm Sci. 2018;10(12):47. doi: 10.22159/ijpps.2018v10i12.29648.

Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol. 2006;102(1-5):89-96. doi: 10.1016/j.jsbmb.2006.09.004, PMID 17113977.

Kunde SS, Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: a review. Colloids Surf B Biointerfaces. 2022;213:112422. doi: 10.1016/j.colsurfb.2022.112422, PMID 35231688.

Gajbhiye SA, Patil MP. Solid lipid nanoparticles: a review on different techniques and approaches to treat breast cancer. Int J App Pharm. 2023;15:52-62. doi: 10.22159/ijap.2023v15i2.46970.

Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM. Translational applications of hydrogels. Chem Rev. 2021;121(18):11385-457. doi: 10.1021/acs.chemrev.0c01177, PMID 33938724.

Pandey M, Choudhury H, Binti Abd Aziz ABA, Bhattamisra SK, Gorain B, Su JST. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: recent progress and contemporary research. Polymers (Basel). 2021;13(8). doi: 10.3390/polym13081340, PMID 33923900.

Zuluaga Velez A, Quintero Martinez A, Orozco LM, Sepulveda Arias JC. Silk fibroin nanocomposites as tissue engineering scaffolds–a systematic review. Biomed Pharmacother. 2021;141. doi: 10.1016/j.biopha.2021.111924.

Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-70. doi: 10.1016/j.addr.2012.09.043, PMID 23137786.

Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015;16(3):4880-903. doi: 10.3390/ijms16034880, PMID 25749470.

Mishra D, Iyyanki TS, Hubenak JR. Silk fibroin nanoparticles and cancer therapy. Nanotechnol cancer. Elsevier Inc; 2017.

Zhang YQ, Shen W, Xiang RL, Zhuge L, Gao W, Wang W. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res. 2007;9(5):885-900. doi: 10.1007/s11051-006-9162-x.

Shavi GV, Nayak UY, Maliyakkal N, Deshpande PB, Raghavendra R, Kumar AR. Nanomedicine of anastrozole for breast cancer: physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci. 2015;141:143-55. doi: 10.1016/j.lfs.2015.09.021, PMID 26423561.

Labib S, Nasr M, Nasr M. Formulation and evaluation of atorvastatin calcium nanocrystals containing p-glycoprotein inhibitors for enhancing oral delivery. Int J Curr Pharm Sci 2021;13(3):19-23. doi: 10.22159/ijcpr.2021v13i3.42087.

Nasrine A, Gulzar Ahmed M, Narayana S. Silk fibroin-anastrozole loaded prolonged-release biodegradable nanomedicine: a promising drug delivery system for breast cancer therapy. Mater Today Proc. 2022;68:56-65. doi: 10.1016/j.matpr.2022.06.101.

Sitrarasi R, Nallal VUM, Razia M, Chung WJ, Shim J, Chandrasekaran M. Inhibition of multi-drug resistant microbial pathogens using an eco-friendly root extract of Furcraea foetida mediated silver nanoparticles. J King Saud Univ Sci. 2022;34(2):101794. doi: 10.1016/j.jksus.2021.101794.

Cao Z, Tang X, Zhang Y, Yin T, Gou J, Wang Y. Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release. Int J Pharm. 2021;607:121021. doi: 10.1016/j.ijpharm.2021.121021, PMID 34416333.

Rattanawongwiboon T, Soontaranon S, Hemvichian K, Lertsarawut P, Laksee S, Picha R. Study on particle size and size distribution of gold nanoparticles by TEM and SAXS. Radiat Phys Chem. 2022;191:109842. doi: 10.1016/j.radphyschem.2021.109842.

El-assal MI, Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative Alzheimer; in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022;14:17-27. doi: 10.22159/ijpps.2022v14i1.43145.

Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: a comprehensive review. Micromachines. 2022;13(10):1-54. doi: 10.3390/mi13101623, PMID 36295976.

Shavi GV, Nayak UY, Reddy MS, Ginjupalli K, Deshpande PB, Averineni RK. A novel long-acting biodegradable depot formulation of anastrozole for breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017;75:535-44. doi: 10.1016/j.msec.2017.02.063, PMID 28415496.

Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27(21):4025-33. doi: 10.1016/j.biomaterials.2006.03.006, PMID 16564085.

Dong Y, Feng SS. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm. 2007;342(1-2):208-14. doi: 10.1016/j.ijpharm.2007.04.031, PMID 17560058.

FDA. Guidance for industry. Stab Test New Drug Subst Prod, U. S. Department of Health and Human Services, Food and Drug Administration. SubStance. 2003;Q1A(R2):1-22.

Shriky B, Kelly A, Isreb M, Babenko M, Mahmoudi N, Rogers S. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J Colloid Interface Sci. 2020;565:119-30. doi: 10.1016/j.jcis.2019.12.096, PMID 31945671.

Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Sreeharsha N, Morsy MA. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLOS ONE. 2021;16(3):e0248857. doi: 10.1371/journal.pone.0248857, PMID 33739996.

Vineetha K, Koland M. Investigation of a biodegradable injectable in situ gelling implantable system of rivastigmine tartrate. Asian J Pharm. 2017;2017:11-2.

Baldassari S, Solari A, Zuccari G, Drava G, Pastorino S, Fucile C. Development of an injectable slow-release metformin formulation and evaluation of its potential antitumor effects. Sci Rep. 2018;8(1):3929. doi: 10.1038/s41598-018-22054-w, PMID 29500390.

Dawood BY, Kassab HJ. Preparation and in vitro evaluation of naproxen as a pH sensitive ocular in situ gel. Int J Appl Pharm. 2019;11:37-44.

Maheshwari M, Miglani G, Mali A, Paradkar A, Yamamura S, Kadam S. Development of tetracycline-serratiopeptidase-containing periodontal gel: formulation and preliminary clinical study. AAPS PharmSciTech. 2006;7(3):1–1076. doi: 10.1208/pt070376, PMID 17025256.

Ng SF, Rouse J, Sanderson D, Eccleston G. A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using franz diffusion cells. Pharmaceutics. 2010;2(2):209-23. doi: 10.3390/pharmaceutics2020209, PMID 27721352.

Sahoo S, Khodakiya A, Mithapara C, Ranjan SVS. Formulation and evaluation of sustained release in situ gel of loteprednol etabonate by using 32 full factorial design. Aegaeum J. 2020;8:566-84.

Shen T, Yang Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des Devel Ther. 2021;15:2099-2107. doi: 10.2147/DDDT.S308448, PMID 34040348.

Kumar A, Sawant KK. Application of multiple regression analysis in optimization of anastrozole-loaded PLGA nanoparticles. J Microencapsul. 2014;31(2):105-14. doi: 10.3109/02652048.2013.808280, PMID 23883302.

Kumar A, Singh A, Flora SJS, Shukla R. Box-behnken design optimized TPGS coated bovine serum albumin nanoparticles loaded with anastrozole. Curr Drug Deliv. 2021;18(8):1148–59, 1136-47. doi: 10.2174/1567201818666210202104810, PMID 33530907.

Cesur S, Cam ME, Sayin FS, Gunduz O. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J Drug Deliv Sci Technol. 2022;67:102977. doi: 10.1016/j.jddst.2021.102977.

Shariatinia Z, Pourzadi N. Designing novel anticancer drug release vehicles based on mesoporous functionalized MCM-41 nanoparticles. J Mol Struct. 2021;1242:130754. doi: 10.1016/j.molstruc.2021.130754.

Aggarwal S, Ikram S. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: stability and kinetic studies. Int J Biol Macromol. 2022;207:205-21. doi: 10.1016/j.ijbiomac.2022.03.014, PMID 35259431.

Zidan AS, Sammour OA, Hammad MA, Megrab NA, Hussain MD, Khan MA. Formulation of anastrozole microparticles as biodegradable anticancer drug carriers. AAPS PharmSciTech. 2006;7(3):61. doi: 10.1208/pt070361, PMID 17025242.

Liu J, Jiang Z, Zhang S, Saltzman WM. Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials. 2009;30(29):5707-19. doi: 10.1016/j.biomaterials.2009.06.061, PMID 19632718.

Inose T, Oikawa T, Tokunaga M, Yamauchi N, Nakashima K, Kato C. Development of composite nanoparticles composed of silica-coated nanorods and single nanometer-sized gold particles toward a novel X-ray contrast agent. Materials Science and Engineering: B. 2020;262:114716. doi: 10.1016/j.mseb.2020.114716.

Jia L, Guo L, Zhu J, Ma Y. Stability and cytocompatibility of silk fibroin-capped gold nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;43:231-6. doi: 10.1016/j.msec.2014.07.024, PMID 25175209.

Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM. In situ gelling systems based on pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm. 2016;502(1-2):70-9. doi: 10.1016/j.ijpharm.2016.02.027, PMID 26899977.

Alemdar M, Tuncaboylu DC, Batu HK, Temel BA. Pluronic based injectable smart gels with coumarin functional amphiphilic copolymers. Eur Polym J. 2022;177:111378. doi: 10.1016/j.eurpolymj.2022.111378.

Ahmad H, Ali Chohan T, Mudassir J, Mehta P, Yousef B, Zaman A. Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. Int J Pharm. 2022;616:121512. doi: 10.1016/j.ijpharm.2022.121512, PMID 35085730.

AS, Ahmed MG, Gowda BH J AS, Ahmed MG, Gowda BH J. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofacial Res. 2021;11(2):269-76. doi: 10.1016/j.jobcr.2021.02.001.

Published

07-05-2023

How to Cite

NASRINE, A., AHMED, M. G., & NARAYANA, S. (2023). SILK FIBROIN-BASED ANASTROZOLE NANOPARTICLE LOADED IN SITU INJECTABLE: DEVELOPMENT AND CHARACTERIZATION. International Journal of Applied Pharmaceutics, 15(3), 113–122. https://doi.org/10.22159/ijap.2023v15i3.47593

Issue

Section

Original Article(s)