TASTE MASKED CLOPERASTINE HYDROCHLORIDE AND RUPATADINE ORAL DISPERSIBLE TABLETS: FORMULATION DESIGN, DEVELOPMENT, CHARACTERIZATION AND PHARMACOKINETICS STUDY ON WISTAR RATS
DOI:
https://doi.org/10.22159/ijap.2023v15i4.47824Keywords:
Orodispersible tablets (ODTs), Cloperastine HCl, Rupatadine, Lyophilized tablets, Taste masking, Eudragit EPO®Abstract
Objective: The main objective of our study was formulating oral dispersible tablets (ODTs) of taste masked cloperastine HCl and rupatadine fumarate by using the lyophilization technique that also enhanced the dissolution of poor solubility of these active substances.
Methods: Taking 3 super disintegrants as variables using the Minitab® 18 factorial design method, 27 formulae of ODTs were obtained. The powdered mixtures before direct compression were characterized using Carr’s index, Hausner’s ratio, and angle of repose. The best-powdered formulae were elected to be prepared as ODTs by direct compression to undergo characterization tests such as wetting time, in vitro disintegration test, and in vivo taste masking. According to the Quality by Design QbD approach; the best formula of ODTs prepared by direct compression was elected to be optimized by the lyophilization technique. Incorporating Eudragit E PO®has a major role in the taste masking of lyophilized ODTs. A comparative in vivo pharmacokinetic study of market products of two active substances was carried out for the conventional ODTs, lyophilized tablets, and market products using wistar rats by oral administration of (0.75 mg/ml) for each active substance.
Results: The bitter taste was apparently masked in the lyophilized ODTs assessed by in vivo taste masking. The highest Cmax of cloperastine HCl was found at 17.25 mcg/ml in the group of Lyophilized ODTs. Furthermore; the highest Cmax of rupatadine was found at 78.88 mcg/ml in the same group.
Conclusion: Lyophilized tablets owned the best bioavailability for both active substances with the highest Cmax compared to market products and ODTs prepared by direct compression.
Downloads
References
Iurian S, Bogdan C, Suciu S, Muntean DM, Rus L, Berindeie M. Milk oral lyophilizates with loratadine: screening for new excipients for pediatric use. Pharmaceutics. 2022 Jun 24;14(7):1342. doi: 10.3390/pharmaceutics14071342, PMID 35890238.
Catania MA, Cuzzocrea S. Pharmacological and clinical overview of cloperastine in treatment of cough. Ther Clin Risk Manag. 2011;7:83-92. doi: 10.2147/TCRM.S16643. PMID 21445282.
Murgia V, Manti S, Licari A, De Filippo M, Ciprandi G, Marseglia GL. Upper respiratory tract infection-associated acute cough and the urge to cough: new insights for clinical practice. Pediatr Allergy Immunol Pulmonol. 2020 Mar;33(1):3-11. doi: 10.1089/ped.2019.1135, PMID 33406022.
Shamizadeh S, Brockow K, Ring J. Rupatadine: efficacy and safety of a non-sedating antihistamine with PAF-antagonist effects. Allergo J Int. 2014;23(3):87-95. doi: 10.1007/s40629-014-0011-7, PMID 26120520.
Roy A, Arees R, Blr M. Formulation development of oral fast-dissolving films of rupatadine fumarate. Asian J Pharm Clin Res. 2020;13:67-72. doi: 10.22159/ajpcr.2020.v13i11.39185.
Ghourichay MP, Kiaie SH, Nokhodchi A, Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): recent advances and perspectives. BioMed Res Int. 2021 Dec 24;2021:6618934. doi: 10.1155/2021/6618934, PMID 34977245.
Mupparaju S, Suryadevara V, Doppalapudi S. Preparation and evaluation of Dolutegravir solid dispersion S. Int J App Pharm. 2021;13:193-8. doi: 10.22159/ijap.2021v13i1.40113.
Nithila P, Raghavendrababu N, Padmavathi Y, Neena G, Sushma K, Poojitha A. New FTIR method development and validation for quantitative analysis of favipiravir in bulk and pharmaceutical dosage forms. Int J Curr Pharm Sci. 2022;14:25-9. doi: 10.22159/ijcpr.2022v14i5.2022.
Hughes H, Leane MM, Tobyn M, Gamble JF, Munoz S, Musembi P. Development of a material sparing bulk density test comparable to a standard USP method for use in early development of API’s. AAPS PharmSciTech. 2015 Feb;16(1):165-70. doi: 10.1208/s12249-014-0215-7, PMID 25233802.
Sousa e Silva JP, Splendor D, Gonçalves IM, Costa P, Sousa Lobo JM. Note on the measurement of bulk density and tapped density of powders according to the European Pharmacopeia. AAPS PharmSciTech. 2013 Sep;14(3):1098-100. doi: 10.1208/s12249-013-9994-5, PMID 23818081.
Beakawi Al-Hashemi HM, Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technol. 2018;330:397-417. doi: 10.1016/j.powtec.2018.02.003.
Xu G, Li M, Lu P. Experimental investigation on flow properties of different biomass and torrefied biomass powders. Biomass Bioenergy. 2019;122:63-75. doi: 10.1016/j.biombioe.2019.01.016.
Lionberger RA, Lee SL, Lee L, Raw A, Yu LX. Quality by design: concepts for ANDAs. AAPS J. 2008;10(2):268-76. doi: 10.1208/s12248-008-9026-7, PMID 18465252.
Charoo NA, Shamsher AAA, Zidan AS, Rahman Z. Quality by design approach for formulation development: a case study of dispersible tablets. Int J Pharm. 2012;423(2):167-78. doi: 10.1016/j.ijpharm.2011.12.024, PMID 22209997.
Dave V, Yadav RB, Ahuja R, Yadav S. Formulation design and optimization of novel fast dissolving tablet of chlorpheniramine maleate by using lyophilization techniques. Bull Fac Pharm Cairo Univ. 2017;55(1):31-9. doi: 10.1016/j.bfopcu.2016.12.001.
Monograph<1216>general chapter, Friability, USP. NF. 2021;39:44.
Ghourichay MP, Kiaie SH, Nokhodchi A, Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): recent advances and perspectives. BioMed Res Int. 2021 Dec 24:6618934. doi: 10.1155/2021/6618934, PMID 34977245.
Pabari R, Ramtoola Z. Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm. 2012 Jul;4(3):157-63. doi: 10.4103/0975-1483.100021, PMID 23112534.
Dey P, Maiti S. Orodispersible tablets: a new trend in drug delivery. J Nat Sci Biol Med. 2010 Jul;1(1):2-5. doi: 10.4103/0976-9668.71663, PMID 22096326.
Monograph a1174n general chapter. Powder flow, USP. NF. 2021;39:44.
Suchicital LG, Gujral H, Speroni KG, Eldridge D, Atherton M. Prospective, randomized, pilot study evaluating the effect of ice chips administration versus none on the bitterness of crushed medications in postoperative bariatric patients. Bariatr Nurs Surg Patient Care. 2011;6(1):15-20. doi: 10.1089/bar.2011.9985.
Parkash V, Maan S, Deepika, Yadav SK, Hemlata, Jogpal V. Fast disintegrating tablets: opportunity in drug delivery system. J Adv Pharm Technol Res. 2011 Oct;2(4):223-35. doi: 10.4103/2231-4040.90877, PMID 22247889.
Kwon GS. Polymeric drug delivery systems. Boca Raton: Taylor & Francis; 2005. doi: 10.1201/9780849348129.
Lale SV, Goyal M, Bansal AK. Development of lyophilization cycle and effect of excipients on the stability of catalase during lyophilization. Int J Pharm Investig. 2011 Oct;1(4):214-21. doi: 10.4103/2230-973X.93007, PMID 23071946.
Jones RJ, Rajabi Siahboomi A, Levina M, Perrie Y, Mohammed AR. The influence of formulation and manufacturing process parameters on the characteristics of lyophilized orally disintegrating tablets. Pharmaceutics. 2011 Jul 20;3(3):440-57. doi: 10.3390/pharmaceutics3030440, PMID 24310589.
Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery–a review. Pharm Sci Technol Today. 2000 Apr 01;3(4):138-45. doi: 10.1016/s1461-5347(00)00247-9. doi: 10.1016/s1461-5347(00)00247-9, PMID 10754543.
Natalia DKH, Rukmana TI. Development of a high-performance liquid chromatography method for analyzing disodium 5′-guanylate and disodium 5′-inosinate levels in flavor enhancers. Int J App Pharm 2018;10(1). doi: 10.22159/ijap.2018.v10s1.28.
Luis CH, German MR, Rolando VZ, Gustavo CB. Design of experiments for the establishment of the dissolution test conditions of rupatadine fumarate 10-mg tablets. J Drug Delivery Ther. 2019;9(1-s):331-6. doi: 10.22270/jddt.v9i1-s.2359.
Aliprandi P, Cima L, Carrara M. Therapeutic use of levocloperastine as an antitussive agent: an overview of preclinical data and clinical trials in adults and children. Clin Drug Investig. 2002;22(4):209-20. doi: 10.2165/00044011-200222040-00001, doi: 10.2165/00044011-200222040-00001.
Desai PM, Er PX, Liew CV, Heng PW. Functionality of disintegrants and their mixtures in enabling fast disintegration of tablets by a quality by design approach. AAPS PharmSciTech. 2014 May 22;15(5):1093-104. doi: 10.1208/s12249-014-0137-4, PMID 24848762.
Augsburger LL, Hoag SW. Orally disintegrating tablets and related tablet formulations in pharmaceutical dosage forms: tablets. 3rd ed. 2008;2:924-42. doi: 10.1201/b15115-28.
Kumar A, Saharan VA. A comparative study of different proportions of superdisintegrants: formulation and evaluation of orally disintegrating tablets of salbutamol sulphate. Turk J Pharm Sci. 2017;14(1):40-8. doi: 10.4274/tjps.74946, PMID 32454593.
Rojas J, Guisao S, Ruge V. Functional assessment of four types of disintegrants and their effect on the spironolactone release properties. AAPS PharmSciTech. 2012 Dec;13(4):1054-62. doi: 10.1208/s12249-012-9835-y, PMID 22899380.
Olechno K, Maciejewski B, Głowacz K, Lenik J, Ciosek Skibinska P, Basa A. Orodispersible films with rupatadine fumarate enclosed in ethylcellulose microparticles as drug delivery platform with taste-masking effect. Materials (Basel). 2022 Mar 14;15(6):2126. doi: 10.3390/ma15062126, PMID 35329589.
Published
How to Cite
Issue
Section
Copyright (c) 2023 SAMMAR FATHY ELHABAL, MAHMOUD H. TEAIMA, YASMIN SHAWQI ALI, MOHAMED A. EL-NABARAWI, REHAB ABDELMONEM, NEHAL ELFAR
This work is licensed under a Creative Commons Attribution 4.0 International License.