NIOSOMES A PROMISSING NANOCARRIER: A REVIEW
DOI:
https://doi.org/10.22159/ijap.2023v15i6.47969Keywords:
Niosomes, Small unilamellar vesicle, Proniosomes, pH gradiant method, Ether injection, Future perspectivesAbstract
There are numerous traditional methods for applying medications to the skin. Transdermal has become a popular method of drug delivery in recent years for a variety of medications that are difficult to administer in other ways. Transdermal drug delivery has a number of advantages, the most important of which is the prevention of first-pass metabolism and the stomach environment, which would render the drug inactive. In addition to discussing in depth the various formulation techniques and permeability enhancement for improved therapeutic efficacy, a transdermal patch allows for the controlled release of medication into the patient, typically through membrane pores that house a reserve of medication or over body heat that melts thin layers of medication entrenched in the adhesive.
The drug molecules can permeate the skin and be administered in this manner. Niosomes are vesicles made of non-ionic surfactants that are more stable, biodegradable, and generally harmless. Because surfactants are more chemically stable than lipids, niosomes are ideal for liposomes. The main topics of this review study are the concept of niosome, its benefits and drawbacks, composition, various type of transdermal formulation, enhancers using in this delivery and novel transdermal drug delivery, variables influencing niosomes, characterization, and use of noisome. Niosomes can be used to carry both amphiphilic and lipophilic drugs. Niosomes have great potential in targeted drug delivery of anticancer and anti-infective agents. This review article represents the structure of Niosomes, its advantages and disadvantages, types of niosomes, applications, method of preparation of niosomes.
Downloads
References
Wang C, Jiang X, Zeng Y, Terry RN, Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. Medicine in Drug Discovery. 2022;13. doi: 10.1016/j.medidd.2021.100118.
Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez Lopez E, Garcia ML. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. HeliyonHeliyon. 2022;8(2):e08938. doi: 10.1016/j.heliyon.2022.e08938. PMID 35198788.
Priyanka P, Sri Rekha M, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci 2022;14(1):1-8. doi: 10.22159/ijpps.2022v14i1.42595.
Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12(3):288. doi: 10.3390/pharmaceutics12030288, PMID 32210127.
Mendes IT, Ruela ALM, Carvalho FC, Freitas JTJ, Bonfilio R, Pereira GR. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surf B Biointerfaces. 2019;177:274-81. doi: 10.1016/j.colsurfb.2019.02.007, PMID 30763792.
Gu Y, Tang X, Yang M, Yang D, Liu J. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int J Pharm. 2019;554:235-44. doi: 10.1016/j.ijpharm.2018.11.024, PMID 30423415.
Raval S, Jani P, Patil P, Thakkar P, Sawant K. Enhancement of bioavailability through transdermal drug delivery of paliperidone palmitate-loaded nanostructured lipid carriers. Ther Deliv. 2021;12(8):583-96. doi: 10.4155/tde-2021-0036, PMID 34286598.
Moura RBP, Andrade LM, Alonso L, Alonso A, Marreto RN, Taveira SF. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: impact of electric current on lipid dynamics. Eur J Pharm Sci. 2022;168:106048. doi: 10.1016/j.ejps.2021.106048, PMID 34699938.
Nnamani PO, Ugwu AA, Nnadi OH, Kenechukwu FC, Ofokansi KC, Attama AA. Formulation and evaluation of transdermal nanogel for delivery of artemether. Drug Deliv Transl Res. 2021;11(4):1655-74. doi: 10.1007/s13346-021-00951-4, PMID 33742415.
Jiang T, MaS, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional trans activator peptide multi-decorated nanostructured lipid carriers. Drug Delivery. 2021;28(1):478-86. doi: 10.1080/10717544.2021.1889717, PMID 33641554.
V Nikam, Maniyar S. Formulation development and evaluation of niosomal gel of collective antifungal agents. Asian J Pharm Clin Res. 2022 Feb;15:64-74. doi: 10.22159/ajpcr.2022.v15i2.43484.
Chandrakala, Chandrakala V. Srinivasan san overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022 Oct;14:1-9. doi: 10.22159/ijpps.2022v14i10.45471.
Chitkara D, Pukale S, Singh A, Mittal A, Sharma S. A lipid-polymer hybrid nanoparticle. PMID. 2021;A1:US2021:0369631.
Domenico F, Jonathan C, Leana R. Nanostructured lipid carrier delivery system, composition, and methods; 2021. p. WO2021. PMID 168573.
Duong VA, Nguyen TTL, Maeng HJ, Chi SC. Nanostructured lipid carriers containing ondansetron hydrochloride by cold high-pressure homogenization method: preparation, characterization, and pharmacokinetic evaluation. J Drug Deliv Sci Technol. 2019;53. doi: 10.1016/j.jddst.2019.101185, PMID 101185.
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397. doi: 10.3390/pharmaceutics11080397, PMID 31398820.
Upreti T, Senthil V. Nanostructured lipid carrier system for the treatment for skin disease-a review. JSM Nanotechnol Nanomed. 2017;5(3):1059-64.
Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv. 2020;17(3):357-77. doi: 10.1080/17425247.2020.1727883, PMID 32064958.
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 2019;51:255-67. doi: 10.1016/j.jddst.2019.02.017.
Gordillo Galeano A, Mora Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285-308. doi: 10.1016/j.ejpb.2018.10.017, PMID 30463794.
Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. doi: 10.1016/j.cis.2021.102437, PMID 34023566.
Abdellatif MM, Elakkad YE, Elwakeel AA, Allam RM, Mousa MR. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In vitro and in vivo wound healing assessment. Saudi Pharm J. 2021;29(11):1238-49. doi: 10.1016/j.jsps.2021.10.004, PMID 34819785.
Jazuli I, Annu, Nabi B, Moolakkadath T, Alam T, Baboota S. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: in vitro and in vivo studies. J Pharm Sci. 2019;108(9):3082-90. doi: 10.1016/j.xphs.2019.05.001, PMID 31077685.
Kapoor H, Aqil M, Imam SS, Sultana Y, Ali A. Formulation of amlodipine Nano lipid carrier: formulation design, physicochemical and transdermal absorption investigation. J Drug Deliv Sci Technol. 2019;49:209-18. doi: 10.1016/j.jddst.2018.11.004.
Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV. Bioavailability enhancement of repaglinide from transdermally applied nanostructured. PMID. 2020;57:101731. doi: 10.1016/j.jddst.2020.101731.
Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transdermal Drug Deliv. 2015;4:23-33. doi: 10.2147/RRTD.S64773.
Martin F. Pharmaceutical manufacturing of liposomes. Drugs Pharm Sci. 1990;41:267-316.
Mayer LD, Bally MB, Hope MJ, Cullis PR. Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1985;816(2):294-302. doi: 10.1016/0005-2736(85)90497-3.
MS, Panda SP, Buddha S, Kumari PVK, Rao YS. Proniosomes: a vesicular drug delivery system. Int J Curr Pharm Sci. 2021;13:32-6. doi: 10.22159/ijcpr.2021v13i6.1925.
Witika BA, Walker RB. Development, manufacture and characterization of niosomes for the delivery for nevirapine. Pharmazie. 2019;74(2):91-6. doi: 10.1691/ph.2019.8168, PMID 30782257.
Witika BA. Master’s [thesis]. Rhodes University; Makhanda. South Africa. The Development, Manufacture and Characterisation of Niosomes Intended To Deliver Nevirapine To the Brain; 2017.
Witika BA, Walker RB. Preformulation characterization and identification of excipients for nevirapine loaded niosomes. Pharmazie. 2021;76(2):77-83. doi: 10.1691/ph.2021.0137, PMID 33714283.
Sreya M, Sailaja AK. Preparation and evaluation of diclofenac sodium niosomal formulations. J Bionanosci. 2017;11(6):489-96. doi: 10.1166/jbns.2017.1486.
Srinivas S, Anand Kumar Y, Hemanth A, Anitha M. Preparation and evaluation of niosomes containing aceclofenac. Dig J Nanomater Biostruct. 2010;5:249-54.
Shakya V, Bansal BK. Niosomes: a novel trend in drug delivery. Int J Res Dev Pharm Life Sci. 2014;3:1036-41.
Gangwar M, Singh R, Goel RK, Nath G. Recent advances in various emerging vescicular systems: an overview. Asian Pac J Trop Biomed. 2012;2(2):S1176-88. doi: 10.1016/S2221-1691(12)60381-5.
Rinaldi F, Hanieh PN, Imbriano A, Passeri D, Del Favero E, Rossi M. Different instrumental approaches to understand the chitosan coated niosomes/mucin interaction. J Drug Deliv Sci Technol. 2020;55:101339. doi: 10.1016/j.jddst.2019.101339.
Bangham AD. Surrogate cells or Trojan horses. The discovery of liposomes. BioEssays. 1995;17(12):1081-8. doi: 10.1002/bies.950171213, PMID 8634070.
Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol. 2015;43(4):282-90. doi: 10.3109/21691401.2014.883401, PMID 24564350.
Bhaskaran S, Lakshmi P. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharm Sci. 2009;51(27):32.
Arora R, Sharma A. Release studies of ketoprofen niosome formulation. J Chem Pharmceutical Res. 2010;2(1):79-82.
Azmin MN, Florence AT, Handjani-Vila RM, Stuart JFB, Vanlerberghe G, Whittaker JS. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985;37(4):237-42. doi: 10.1111/j.2042-7158.1985.tb05051.x, PMID 2860220.
Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A. The preparation and properties of niosomes-non-ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863-8. doi: 10.1111/j.2042-7158.1985.tb04990.x, PMID 2868092.
Amreen A, R Kv. Formulation and evaluation of tramadol hydrochloride-loaded niosomal gel by ether injection method. Asian J Pharm Clin Res. 2023;16:170-3. doi: 10.22159/ajpcr.2023.v16i5.47133.
Published
How to Cite
Issue
Section
Copyright (c) 2023 MANJUSHA A. BHANGE, ANIL M. PETHE, AMRAPALI JADHAV
This work is licensed under a Creative Commons Attribution 4.0 International License.