IN VITRO RELEASE AND PREDICTED IN VIVO BEHAVIOR OF METRONIDAZOLE VAGINAL FORMULATIONS

Authors

  • JOSE RAUL MEDINA-LOPEZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0002-4159-8403
  • HEDWYN RODOLFO MENDEZ HERNANDEZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0009-0004-4188-2465
  • JUAN CARLOS RUIZ-SEGURA Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0003-2304-7971
  • MARCELA HURTADO Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico

DOI:

https://doi.org/10.22159/ijap.2023v15i4.48000

Keywords:

Convolution, Inverse release function, Metronidazole, Ovules, USP apparatus 4

Abstract

Objective: To document the in vitro release and to predict the in vivo behavior of metronidazole ovules (reference and generic formulations) using USP Apparatus 1 and 4. Prediction of metronidazole plasma concentrations was proposed with the Inverse Release Function approach. The information generated can be considered for the development of new metronidazole vaginal drug products.

Methods: Dissolution profiles were obtained using USP Apparatus 1 at 100 rpm and 900 ml of pH 4.5 acetate buffer. Additionally, USP Apparatus 4 at 16 ml/min was used. Drug was quantified at 278 nm every 10 min until 60 min. Mean dissolution time (MDT) and dissolution efficiency (DE) were calculated. Mathematical models such as Korsmeyer-Peppas, Makoid-Banakar, Peppas-Sahlin, Logistic and Weibull were used to fit in vitro data. Percent of prediction error (%PE) for Cmax and AUC0-inf were calculated.

Results: Metronidazole ovules of reference formulation released<2% at 60 min in both dissolution methods. Generic formulation released>85%. Values of DE and MDT using USP Apparatus 1 and 4 were 40.40%, 31.94 min, 70.91% and 15.44 min, respectively. In vitro release of generic drug product was better described by Weibull function. %PE for Cmax and AUC0-inf were <15%.

Conclusion: Due to limited drug release of reference formulation it was not possible to know the in vitro behavior of this drug product. Generic formulation showed a better in vitro performance by being able to characterize the main dissolution parameters DE and MDT and a release kinetics well defined by a mathematical equation.

Downloads

Download data is not yet available.

References

Falconi-McCahill A. Bacterial vaginosis: a clinical update with a focus on complementary and alternative therapies. J Midwifery Womens Health. 2019;64(5):578-91. doi: 10.1111/jmwh.13013, PMID 31368667.

Mitchell CM, Hitti JE, Agnew KJ, Fredricks DN. Comparison of oral and vaginal metronidazole for treatment of bacterial vaginosis in pregnancy: impact on fastidious bacteria. BMC Infect Dis. 2009;9:89. doi: 10.1186/1471-2334-9-89, PMID 19515236.

Gerton ML, Mann BK. Mucoadhesive hyaluronic acid-based films for vaginal delivery of metronidazole. J Biomed Mater Res B Appl Biomater. 2021;109(11):1706-12. doi: 10.1002/jbm.b.34827. PMID 33675578.

Badawi NM, Elkafrawy MA, Yehia RM, Attia DA. Clinical comparative study of optimized metronidazole loaded lipid nanocarrier vaginal emulgel for management of bacterial vaginosis and its recurrence. Drug Deliv. 2021;28(1):814-25. doi: 10.1080/10717544.2021.1912211, PMID 33899634.

Utomo E, Dominguez robles J, Anjani QK, Picco CJ, Korelidou A, Magee E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2023;5:100142. doi: 10.1016/j.ijpx.2022.100142. PMID 36531743.

Namdev N. Formulation and evaluation of egg albumin based controlled release microspheres of metronidazole. Int J Curr Pharm Res. 2016;8(3):28-32.

Freeman CD, Klutman NE, Lamp KC. Metronidazole. A therapeutic review and update. Drugs. 1997;54(5):679-708. doi: 10.2165/00003495-199754050-00003, PMID 9360057.

McGilveray IJ, Mousseau N, Brien R. Bioavailability of 23-canadian formulations of phenylbutazone. Can J Pharm Sci. 1978;13:33-9.

Boix Montanes A, Barrera Puigdollers MT. Sustitucion y seleccion de equivalentes terapéuticos. Farm Hosp. 1996;20(6):351-8.

McGilveray IJ, Midha KK, Loo JC, Cooper JK. The bioavailability of commercial metronidazole formulations. Int J Clin Pharmacol Biopharm. 1978;16(3):110-5. PMID 649227.

Itiola OA, Pilpel N. Studies on metronidazole tablet formulations. J Pharm Pharmacol. 1986;38(2):81-6. doi: 10.1111/j.2042-7158.1986.tb04516.x. PMID 2870167.

Idkaidek NM, Najib NM. Enhancement of oral absorption of metronidazole suspension in humans. Eur J Pharm Biopharm. 2000;50(2):213-6. doi: 10.1016/s0939-6411(00)00098-9, PMID 10962229.

Rediguieri CF, Porta V, G Nunes DSG, Nunes TM, Junginger HE, Kopp S. Biowaiver monographs for immediate release solid oral dosage forms: metronidazole. J Pharm Sci. 2011;100(5):1618-27. doi: 10.1002/jps.22409, PMID 21374600.

United States Pharmacopeia and national formulary USP 44-NF 39. The United States of America Pharmacopeial Convention. Rockville, MD: Inc; 2021.

Ozyazici M, Gokce E, Hizarcioglu SY, Taner MS, Koseoglu K, Ertan G. Dissolution and vaginal absorption characteristics of metronidazole and ornidazole. Pharmazie. 2006;61(10):855-61. PMID 17069425.

Hoffmann C, Focke N, Franke G, Zschiesche M, Siegmund W. Comparative bioavailability of metronidazole formulations (Vagimid) after oral and vaginal administration. Int J Clin Pharmacol Ther. 1995;33(4):232-9. PMID 7620694.

Perioli L, Ambrogi V, Pagano C, Scuota S, Rossi C. FG90 chitosan as a new polymer for metronidazole mucoadhesive tablets for vaginal administration. Int J Pharm. 2009;377(1-2):120-7. doi: 10.1016/j.ijpharm.2009.05.016, PMID 19454304.

Cirri M, Maestrelli F, Scuota S, Bazzucchi V, Mura P. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int J Pharm. 2021;598:120375. doi: 10.1016/j.ijpharm.2021.120375. PMID 33581271.

Tugcu Demiroz F, Saar S, Tort S, Acarturk F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev Ind Pharm. 2020;46(6):1015-25. doi: 10.1080/03639045.2020.1767125, PMID 32393132.

Listado actualizado de Medicamentos de Referencia 2023/01. Cofepris. Mexico. Available from: https://www.gob.mx/cms/uploads/attachment/file/803597/lMR_2023-01_actualizaci_n_10_febrero_2023.pdf. [Last accessed on 01 Apr 2023]

Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209(1-2):57-67. doi: 10.1016/s0378-5173(00)00554-8, PMID 11084246.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C. DD solver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Cardot JM, Lukas JC, Muniz P. Time scaling for in vitro-in vivo correlation: the inverse release function (IRF) approach. AAPS J. 2018;20(6):95. doi: 10.1208/s12248-018-0250-5, PMID 30159772.

Qureshi SA. In vitro-in vivo correlation (IVIVC) and determining drug concentrations in blood from dissolution testing–a simple and practical approach Open Drug Deliv J. 2010;4(2):38-47. doi: 10.2174/1874126601004020038.

Zhang Y, Huo M, Zhou J, Xie S. PK solver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Programs Biomed. 2010;99(3):306-14. doi: 10.1016/j.cmpb.2010.01.007. PMID 20176408.

Herrera GL. Determinación de la bioequivalencia de dos formulaciones orales de metronidazol en voluntarios sanos [dissertation]. Mexico: Instituto Politecnico Nacional; 2006.

Food and Drug Administration. Guidance for Industry: extended-release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations; 1997. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-invivo-correlations. [Last accessed on 01 Apr 2023]

Bendas ER. Two different approaches for the prediction of in vivo plasmaconcentration–time profile from in vitro release data of once-daily formulations of diltiazem hydrochloride. Arch Pharm Res. 2009;32(9):1317-29. doi: 10.1007/s12272-009-1918-2, PMID 19784589.

El-Masry SM, Helmy SA. Hydrogel-based matrices for controlled drug delivery of etamsylate: prediction of in vivo plasma profiles. Saudi Pharm J. 2020;28(12):1704-18. doi: 10.1016/j.jsps.2020.10.016, PMID 33424262.

Wang B, Xiao BB, Shang CG, Wang K, Na RS, Nu XX. Molecular analysis of the relationship between specific vaginal bacteria and bacterial vaginosis metronidazole therapy failure. Eur J Clin Microbiol Infect Dis. 2014;33(10):1749-56. doi: 10.1007/s10096-014-2128-5, PMID 24816815.

Ilango KB, Kavimani S. A systematic review of mathematical models of pharmaceutical dosage forms. Int J Curr Pharm Rev Res. 2015;6(1):59-70.

Ozyazici M, Turgut EH, Taner MS, Koseoglu K, Ertan G. In vitro evaluation and vaginal absorption of metronidazole suppositories in rabbits. J Drug Target. 2003;11(3):177-85. doi: 10.1080/10611860310001603814, PMID 14577974.

Szymanska E, Winnicka K. Comparison of flow-through cell and paddle methods for testing vaginal tablets containing a poorly water-soluble drug. Trop J Pharm Res 2013;12(1):39-44. doi: 10.4314/tjpr.v12i1.7.

Published

07-07-2023

How to Cite

MEDINA-LOPEZ, J. R., MENDEZ HERNANDEZ, H. R., RUIZ-SEGURA, J. C., & HURTADO, M. (2023). IN VITRO RELEASE AND PREDICTED IN VIVO BEHAVIOR OF METRONIDAZOLE VAGINAL FORMULATIONS. International Journal of Applied Pharmaceutics, 15(4), 306–309. https://doi.org/10.22159/ijap.2023v15i4.48000

Issue

Section

Short Communication(s)

Most read articles by the same author(s)

<< < 1 2