THE POTENTIAL OF INDONESIAN MARINE NATURAL PRODUCT WITH DUAL TARGETING ACTIVITY THROUGH SARS-COV-2 3CLPRO AND PLPRO: AN IN SILICO STUDIES

Authors

  • CIKAL FIARSI NAHIR Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Jawa Barat-16424, Indonesia https://orcid.org/0000-0003-1280-755X
  • MASTERIA YUNOVILSA PUTRA Research Center for Vaccine and Drug, National Research and Innovation Agency, Bogor, Jawa Barat, Indonesia. National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java-16424, Indonesia
  • JOKO TRI WIBOWO Research Center for Vaccine and Drug, National Research and Innovation Agency, Bogor, Jawa Barat, Indonesia https://orcid.org/0000-0003-3467-6263
  • VANNAJAN SANGHIRAN LEE Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • ARRY YANUAR Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Jawa Barat-16424, Indonesia. National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java-16424, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48416

Keywords:

Marine Natural Products, In Silico, SARS-CoV-2, 3CLpro, PLpro, Virtual Screening, ADMET Prediction, Molecular Docking, Molecular Dynamic

Abstract

Objective: This research was conducted to find potential candidate compounds from one hundred thirty-seven Indonesian marine natural products capable of preventing SARS-CoV-2 with a computational approach.

Methods: The physicochemical properties and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile of compounds were predicted using ADMETLab. The candidate compounds were filtered using AutodockVina. Molecular docking was carried out using AutoDockTools on the SARS-CoV-2 3-Chymotrypsin-like protease (3CLpro) and Papain-like protease (PLpro) that is essential for the SARS-CoV-2 life cycle. Also, AMBER22 was used to perform molecular dynamics simulations in this study.

Results: Based on molecular docking results, Pre-Neo-Kaluamine has good activity against 3CLpro with a bond energy value of-10.35 kcal/mol. Cortistatin F showed excellent binding activity on PLpro, with energy value results of-10.62 kcal/mol. Acanthomanzamine C has dual targeting activity and interacts well with protein 3CLpro and PLpro with binding energy values ranging from 10 kcal/mol to 14 kcal/mol.

Conclusion: The molecular docking results were corroborated by molecular dynamics simulation results and showed good stability of the candidate ligands, and we found that there were three potential compounds as protease inhibitors of SARS-CoV-2 including Pre-Neo-Kaluamine for 3CLpro, Cortistatin F for PLpro, and Acanthomanzamine C which had dual targeting activity against both proteases.

Downloads

Download data is not yet available.

References

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7, PMID 32007143.

Sukumaran S, Sathianarayanan S. A review on covid-19 pandemic a global threat-current status and challenges and preventive strategies. Int J Appl Pharm. 2021 Sep 7:10-4.

Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, Ghadimi K, Parsa S, Mohammadi S. Mechanism and adverse effects of Covid-19 drugs: a basic review. Int J Physiol Pathophysiol Pharmacol. 2021;13(4):102-9. PMID 34540130.

Jain NK, Agrawal A, Kulkarni GT, Tailang M. Molecular docking study on phytoconstituents of traditional ayurvedic drug TULSI (ocimum sanctum linn.) against covid-19 MPRO enzyme: an in silico study. Int J Pharm Pharm Sci. 2022 Apr 1:44-50. doi: 10.22159/ijpps.2022v14i4.43181.

Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: a novel structure-based design approach to treat covid-19. Curr Res Struct Biol. 2021 Jan 1;3:9-18. doi: 10.1016/j.crstbi.2020.12.001, PMID 33319212.

Tumskiy RS, Tumskaia AV. Multistep rational molecular design and combined docking for discovery of novel classes of inhibitors of SARS-CoV-2 main protease 3CLpro. Chem Phys Lett. 2021 Oct 1;780:138894. doi: 10.1016/j.cplett.2021.138894, PMID 34276059.

Mourad T, Alahmad S. A computational study of ciprofloxacin metabolites and some natural compounds against resistant methicillin staphylococcus aureus (MRSA). Int J Pharm Pharm Sci. 2022 Aug 1;14(8):22-8. doi: 10.22159/ijpps.2022v14i8.44560.

Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M. Natural products can be used in therapeutic management of covid-19: probable mechanistic insights. Biomed Pharmacother. 2022 Mar 1;147:112658. doi: 10.1016/j.biopha.2022.112658, PMID 35066300.

Izzati F, Warsito MF, Bayu A, Prasetyoputri A, Atikana A, Sukmarini L. Chemical diversity and biological activity of secondary metabolites isolated from Indonesian marine invertebrates. Molecules. 2021;26(7):1898. doi: 10.3390/molecules26071898, PMID 33801617.

Nurrachma MY, Sakaraga D, Nugraha AY, Rahmawati SI, Bayu A, Sukmarini L. Cembranoids of soft corals: recent updates and their biological activities. Nat Prod Bioprospect. 2021 Jun 22;11(3):243-306. doi: 10.1007/s13659-021-00303-2, PMID 33890249.

Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. Pharmacia. 2021;68(3):533-60. doi: 10.3897/pharmacia.68.e68432.

Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of covid-19. Science. 2021;374(6575):1586-93. doi: 10.1126/science.abl4784, PMID 34726479.

RCSB PDB-7RFW: structure of SARS-CoV-2 main protease in complex with a covalent inhibitor. Available from: https://www.rcsb.org/structure/7RFW. [Last accessed on 17 Nov 2022]

Calleja DJ, Kuchel N, Lu BGC, Birkinshaw RW, Klemm T, Doerflinger M. Insights into drug repurposing, as well as specificity and compound properties of piperidine-based SARS-CoV-2 PLpro inhibitors. Front Chem. 2022 Apr 12;10:861209. doi: 10.3389/fchem.2022.861209, PMID 35494659.

RCSB PDB-7TZJ: SARS CoV-2 PLpro in complex with inhibitor 3k. Available from: https://www.rcsb.org/structure/7TZJ. [Last accessed on 17 Nov 2022]

Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV. RCSB protein data bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 Jan 8;49(D1):D437-51. doi: 10.1093/nar/gkaa1038, PMID 33211854.

Webb B, Sali A. Comparative protein structure modeling using modeller. CP in Bioinformatics. 2016;54(1). doi: 10.1002/cpbi.3.ncbi.nlm.nih.gov/27322406.

Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 2003 Dec 12;19(18):2500-1. doi: 10.1093/bioinformatics/btg362, PMID 14668246.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/jcc.21256, PMID 19399780.

Eberhardt J, Santos Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021 Aug 23;61(8):3891-8. doi: 10.1021/acs.jcim.1c00203, PMID 34278794.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. doi: 10.1007/978-1-4939-2269-7_19, PMID 25618350.

Biovia. Biovia discovery studio V.21.1.0. Dassault Syst. 2021.

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C. ADMET lab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 Jul 2;49(W1):W5-W14. doi: 10.1093/nar/gkab255, PMID 33893803.

Lipinski CA. Chapter 27. Bioisosterism in drug design. In: Annual reports in medicinal chemistry; 1986. p. 283-91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065774308611379. [Last accessed on 29 Apr 2021]

Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR. San Fran: University of California; 2022.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011 Dec 7;3(1):33. doi: 10.1186/1758-2946-3-33, PMID 21982300.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084, PMID 15264254.

AMBER advanced tutorial 33-constant pH and redox potential MD: Section 2. Available from: https://ambermd.org/tutorials/advanced/tutorial33/section2. htm. [Last accessed on 07 Jan 2023]

Kondapuram SK, Sarvagalla S, Coumar MS. Docking-based virtual screening using PyRx tool: autophagy target Vps34 as a case study. In: Molecular docking for computer-aided drug design. Elsevier; 2021. p. 463-77.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID 28256516.

Ma S, McGann M, Enyedy IJ. The influence of calculated physicochemical properties of compounds on their ADMET profiles. Bioorg Med Chem Lett. 2021 Mar;36:127825. doi: 10.1016/j.bmcl.2021.127825, PMID 33508464.

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C. ADMET lab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 Jul 2;49(W1):W5-W14. doi: 10.1093/nar/gkab255, PMID 33893803.

Alsanosi SMM, Skiffington C, Padmanabhan S. Pharmacokinetic pharmacogenomics. Handbook of pharmacogenomics and stratified medicine; 2014 Jan 1. p. 341-64.

Urquhart BL, Nolin TD. Drug metabolism in chronic kidney disease. Chronic Ren Dis. 2019 Jan 1:1035-51.

Vuppalanchi R. Metabolism of drugs and xenobiotics. Practical hepatic pathology: a diagnostic approach a volume in the pattern recognition series, expert consult; 2011 Feb 4. p. 45-52.

Mardianingrum R, Endah SRN, Suhardiana E, Ruswanto R, Siswandono S. Docking and molecular dynamic study of isoniazid derivatives as anti-tuberculosis drug candidate. Chem Data Coll. 2021 Apr 1;32:100647. doi: 10.1016/j.cdc.2021.100647.

Ruswanto R, Nofianti T, Mardianingrum R, Kesuma D, Siswandono. Design, molecular docking, and molecular dynamics of thiourea-iron (III) metal complexes as NUDT5 inhibitors for breast cancer treatment. Heliyon. 2022 Sep 1;8(9):e10694. doi: 10.1016/j.heliyon.2022.e10694, PMID 36177227.

Vangeel L, Chiu W, De Jonghe S, Maes P, Slechten B, Raymenants J. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 omicron and other variants of concern. Antiviral Res. 2022 Feb 1;198:105252. doi: 10.1016/j.antiviral.2022.105252, PMID 35085683.

Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett. 2022 Apr 15;62:128629. doi: 10.1016/j.bmcl.2022.128629, PMID 35182772.

Das A, Dasgupta S, Pathak T. Crescent-shaped meta-substituted benzene derivatives as a new class of non-nucleoside ribonuclease a inhibitors. Bioorg Med Chem. 2022 Oct 1;71:116888. doi: 10.1016/j.bmc.2022.116888, PMID 35944385.

Ismail MI, Ragab HM, Bekhit AA, Ibrahim TM. Targeting multiple conformations of SARS-CoV2 papain-like protease for drug repositioning: an in-silico study. Comput Biol Med. 2021 Apr 1;131:104295. doi: 10.1016/j.compbiomed.2021.104295, PMID 33662683.

Jin MY, Zhen Q, Xiao D, Tao G, Xing X, Yu P. Engineered non-covalent π interactions as key elements for chiral recognition. Nat Commun. 2022;13(1):3276. doi: 10.1038/s41467-022-31026-8, PMID 35672365.

Harvey MJ, De Fabritiis G. High-throughput molecular dynamics: the powerful new tool for drug discovery. Drug Discov Today. 2012 Oct 1;17(19-20):1059-62. doi: 10.1016/j.drudis.2012.03.017, PMID 22504137.

Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018 Sep 9;99(6):1129-43. doi: 10.1016/j.neuron.2018.08.011, PMID 30236283.

Tan KP, Singh K, Hazra A, Madhusudhan MS. Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations. Curr Res Struct Biol. 2021 Jan 1;3:1-8. doi: 10.1016/j.crstbi.2020.11.002, PMID 34382009.

Published

07-09-2023

How to Cite

NAHIR, C. F., PUTRA, M. Y., WIBOWO, J. T., LEE, V. S., & YANUAR, A. (2023). THE POTENTIAL OF INDONESIAN MARINE NATURAL PRODUCT WITH DUAL TARGETING ACTIVITY THROUGH SARS-COV-2 3CLPRO AND PLPRO: AN IN SILICO STUDIES. International Journal of Applied Pharmaceutics, 15(5), 171–180. https://doi.org/10.22159/ijap.2023v15i5.48416

Issue

Section

Original Article(s)