SUSTAINED ANTICANCER EFFECT BY NARINGIN-LOADED ZINC OXIDE NANOPARTICLES IN HUMAN LUNG ADENOCARCINOMA A549 CELLS

Authors

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48848

Keywords:

Naringin, Anticancer, Antioxidant assays, Cytotoxicity

Abstract

Objective: This study aimed to design naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) and evaluate the formulated nanoparticles (NPs) for their antioxidant and anticancer potential.

Methods: Naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) were prepared using a modified sol-gel method with ethylenediaminetetraacetic acid (EDTA) as a capping agent. Subsequently, were characterized using dynamic light scattering (DLS), powder X-ray diffraction (PW-XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution scanning electron microscopy (HR-SEM), and Energy Dispersive X-ray analysis (EDX). Furthermore, the naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) were evaluated for their in vitro free radical scavenging activity using antioxidant assays and inhibition of lipid peroxidation potential using the altered thiobarbituric acid-reactive species (TBARS) test. The cytotoxic effect of naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) on the non-transformed Vero cell line and lung cancer A549 cell line was investigated using the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT assay. Apoptosis study was conducted using the Acridine orange/Ethidium bromide (AO/EB) double staining assay, while propidium iodide (PI) stain was utilized to observe apoptotic morphological changes.

Results: The prepared naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) were smooth and hexagonal, with an average particle size of 500 nm. The antioxidant assays demonstrated that the naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) and ascorbic acid exhibited comparable free radical scavenging and inhibition of lipid peroxidation activity. In MTT assay, the naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) displayed IC₅₀ values of 1014.05 µg/ml for Vero cell lines and 317.51 µg/ml for A549 cells, highlighting their influence on cell viability. Remarkably, treatment of A549 cells with the Nar-ZnO NPs resulted in dose-dependent apoptotic morphological changes, as observed through (AO/EB) double staining assay and propidium iodide (PI) stain.

Conclusion: The study findings revealed that the naringin-loaded zinc oxide nanoparticles (Nar-ZnO NPs) displayed dose-dependent free radical scavenging activity, significant inhibition of lipid peroxidation, and notable anticancer properties against A549 cells.

Downloads

Download data is not yet available.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.

Hu C, Du W. Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging (Albany, NY). 2020 Dec 20;12(24):25767-77. doi: 10.18632/aging.104187, PMID 33232271.

Meyers CA. How chemotherapy damages the central nervous system. J Biol. 2008;7(4):11. doi: 10.1186/jbiol73, PMID 18439322.

Mishra P, Ahmad A, Al-Keridis LA, Alshammari N, Alabdallah NM, Muzammil K. Doxorubicin-conjugated zinc oxide nanoparticles, biogenically synthesized using a fungus Aspergillus niger, exhibit high therapeutic efficacy against lung cancer cells. Molecules. 2022 Apr 16;27(8):2590. doi: 10.3390/molecules27082590, PMID 35458790.

Ashraf MA. Phytochemicals as potential anticancer drugs: time to ponder nature’s bounty. BioMed Res Int. 2020 Mar 6;2020:8602879. doi: 10.1155/2020/8602879, PMID 32076618.

Enrico CE. Nanotechnology-based drug delivery of natural compounds and phytochemicals for the treatment of cancer and other diseases. Stud Nat Prod Chem. 2019;62:91-123. doi: 10.1016/B978-0-444-64185-4.00003-4.

Perera WPTD, Dissanayake RK, Ranatunga UI, Hettiarachchi NM, Perera KDC, Unagolla JM. Curcumin-loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv. 2020;10(51):30785-95. doi: 10.1039/D0RA05755J, PMID 35516060.

Ravi R, Zeyaullah M, Ghosh S, Khan Warsi MK, Baweja R, AlShahrani AM. Use of gold nanoparticle-silibinin conjugates: a novel approach against lung cancer cells. Front Chem. 2022 Oct 19;10:1018759. doi: 10.3389/fchem.2022.1018759, PMID 36311430.

Yin H, Zhang H, Liu B. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim Biophys Sin (Shanghai). 2013 Aug;45(8):634-40. doi: 10.1093/abbs/gmt063, PMID 23786839.

Yang N, Qiu F, Zhu F, Qi L. Therapeutic potential of zinc oxide-loaded syringic acid against in vitro and in vivo model of lung cancer. Int J Nanomedicine. 2020 Oct 27;15:8249-60. doi: 10.2147/IJN.S272997, PMID 33149573.

Salehi B, Fokou PVT, Sharifi Rad M, Zucca P, Pezzani R, Martins N. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel). 2019 Jan 10;12(1):11. doi: 10.3390/ph12010011, PMID 30634637.

Lakshmipriya T, Gopinath SCB. Introduction to nanoparticles and analytical devices. Nanoparticles Anal Devices. 2021:1-29. doi: 10.1016/B978-0-12-821163-2.00001-7.

Rani N, Rawat K, Saini M, Shrivastava A, Kandasamy G, Saini K. Rod-shaped ZnO nanoparticles: synthesis, comparison and in vitro evaluation of their apoptotic activity in lung cancer cells. Chem Pap. 2022;76(2):1225-38. doi: 10.1007/s11696-021-01942-y.

Singh G, Singh SP. Synthesis of zinc oxide by sol-gel method and to study it’s structural properties. AIP Conf Proc. 2020;2220:020184. doi: 10.1063/5.0001593.

Dulta K, Agceli GK, Chauhan P, Chauhan PK. Biogenic production and characterization of CuO nanoparticles by carica papaya leaves and its biocompatibility applications. J Inorg Organomet Polym. 2021;31(4):1846-57. doi: 10.1007/s10904-020-01837-7.

Diwan R, Shinde A, Malpathak N. Phytochemical composition and antioxidant potential of Ruta graveolens L. in vitro culture lines. J Bot. 2012;2012:1-6. doi: 10.1155/2012/685427.

Akbarian M, Mahjoub S, Elahi SM, Zabihi E, Tashakkorian H. Appraisal of the biological aspect of Zinc oxide nanoparticles prepared using extract of Camellia sinensis L. Mater Res Express. 2019 Sep 26;6(9):095022. doi: 10.1088/2053-1591/ab2c49.

Rajan Abhinaya S, Padmini R. Biofabrication of zinc oxide nanoparticles using Pterocarpus marsupium and its biomedical applications. Asian J Pharm Clin Res 2018;12(1). doi: 10.22159/ajpcr.2018.v12i1.28682.

Kowsalya E, MosaChristas K, Jaquline CRI, Balashanmugam P, Devasena T. Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF-7 breast cancer cells. Applied Organom Chemis. 2021;35(1). doi: 10.1002/aoc.6071.

Erdogan MK, Agca CA, Askın H. Quercetin and luteolin improve the anticancer effects of 5-fluorouracil in human colorectal adenocarcinoma in vitro model: a mechanistic insight. Nutr Cancer. 2022 Mar;74(2):660-76. doi: 10.1080/01635581.2021.1900301, PMID 34309458.

Pate KP, Safier PS. Chemical metrology methods for CMP quality. Adv Chem Mech Planarization (CMP). 2016:299-325. doi: 10.1016/B978-0-08-100165-3.00012-7.

Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem. 2017;10(6):862-76. doi: 10.1016/j.arabjc.2015.08.008.

Tulasi SL, Swamy AVVS, Pavani P, Subhashini V. Green synthesis of zinc oxide nanoparticles using schrebera swietenioides roxb., aqueous leaf extract and investigation of its effect on seed germination and plant growth on pigeon pea (Cajanus cajan Linn.). Int J App Pharm. 2022;14(2):193-9. doi: 10.22159/ijap.2022v14i2.43696.

MH, PR. Phytosynthesis and characterization of silver nanoparticles from Ruellia tuberosa (L.): effect of physicochemical parameters. Asian J Pharm Clin Res. 2021;14(12):31-8. doi: 10.22159/ajpcr.2021.v14i12.42020.

AbdElhady MM. Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem. 2012;2012:1-6. doi: 10.1155/2012/840591.

Giri PK, Bhattacharyya S, Chetia B, Kumari S, Singh DK, Iyer PK. High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties. J Nanosci Nanotechnol. 2012 Jan;12(1):201-6. doi: 10.1166/jnn.2012.5113, PMID 22523966.

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11-26. doi: 10.1007/s12291-014-0446-0, PMID 25646037.

Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant supplementation in oxidative stress-related diseases: what have we learned from studies on alpha-tocopherol? Antioxidants (Basel). 2022 Nov 24;11(12):2322. doi: 10.3390/antiox11122322, PMID 36552530.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-26. doi: 10.4103/0973-7847.70902, PMID 22228951.

Pereira RM, Andrades NE, Paulino N, Sawaya AC, Eberlin MN, Marcucci MC. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules. 2007 Sep 30;12(7):1352-66. doi: 10.3390/12071352, PMID 17909491.

Ananthalakshmi R, Rajarathinam SRX, Sadiq AM. Antioxidant activity of ZnO nanoparticles synthesized using luffa acutangula peel extract. Res J Pharm Technol. 2019;12(4):1569-72. doi: 10.5958/0974-360X.2019.00260.9.

Ginouves M, Carme B, Couppie P, Prevot G. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp. J Clin Microbiol. 2014 Jun;52(6):2131-8. doi: 10.1128/JCM.00201-14, PMID 24719447.

Escobar ML, Echeverria OM, Vazquez Nin GH. Necrosis as programmed cell death. In: Cell death–autophagy, apoptosis and necrosis. Intech Open; 2012. p. 61-81. doi: 10.5772/61483.

Umamaheswari A, Prabu SL, John SA, Puratchikody A. Green synthesis of zinc oxide nanoparticles using leaf extracts of raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol Rep (Amst). 2021 Dec;29:e00595. doi: 10.1016/j.btre.2021.e00595, PMID 33659193.

Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines. 2022 Jun 23;10(7):1686. doi: 10.3390/biomedicines10071686, PMID 35884991.

Published

07-11-2023

How to Cite

RAVILLA, L., M., L., & R., P. (2023). SUSTAINED ANTICANCER EFFECT BY NARINGIN-LOADED ZINC OXIDE NANOPARTICLES IN HUMAN LUNG ADENOCARCINOMA A549 CELLS. International Journal of Applied Pharmaceutics, 15(6), 315–325. https://doi.org/10.22159/ijap.2023v15i6.48848

Issue

Section

Original Article(s)