EVALUATION OF THE POTENTIAL CYTOTOXICITY OF RUTHENIUM COMPLEX II AGAINST U-373 GLIOBLASTOMA CELLS

Authors

  • MOHAMED J. SAADH Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan. Applied Science Research Center. Applied Science Private University, Amman, Jordan https://orcid.org/0000-0002-5701-4900
  • MOHAMMED A. AL-WAHISH Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48940

Keywords:

Anticancer agents, Coordination complexes, Cytotoxic activity, Ruthenium, Tumor cell lines

Abstract

Objective: The potential of ruthenium complexes as anticancer agents has gained significant attention in the scientific community. The aim of this study was to investigate the effect of dithiocyanato-N-bis[8(diphenylphosphino)quinoline]ruthenium (II), [Ru(N-P)2(NCS)2] on the glioblastoma U-373 tumor cells and apoptosis.

Methods: Ru(N-P)2(NCS)2] was synthesized and characterized using FTIR, and X-ray crystallography. The cytotoxic effects of [Ru(N-P)2(NCS)2] on glioblastoma U-373 tumor cells were evaluated using both the trypan blue assay and the activity of caspase-3 to detect apoptosis. A DPPH scavenging assay was used to evaluate the antioxidant activity.

Results: The [Ru(N-P)2(NCS)2] complex effectively inhibited the glioblastoma U-373 tumor cells with an IC50 of ~ 23 µg/ml. Similar to the majority of chemotherapeutic agents that kill via the intrinsic pathway, [Ru(N-P)2(NCS)2] induces apoptosis, which was confirmed by the activation of caspase-3, and these effects were dose-dependent. Ruthenium has antioxidant properties, so ruthenium Complex II exhibits lower toxicity towards normal cells while effectively targeting and eliminating cancer cells.

Conclusion: [Ru(N-P)2(NCS)2] is considered promising for researchers investigating putative biological activities, particularly antitumor and immune-related activity.

Downloads

Download data is not yet available.

References

Zuba I, Zuba M, Piotrowski M, Pawlukojc A. Ruthenium as an important element in nuclear energy and cancer treatment. Appl Radiat Isot. 2020;162:109176. doi: 10.1016/j.apradiso.2020.109176, PMID 32310093.

Dabiri Y, Schmid A, Theobald J, Blagojevic B, Streciwilk W, Ott I. A ruthenium (II) N-heterocyclic carbene (NHC) complex with naphthalimide ligand triggers apoptosis in colorectal cancer cells via activating the ROS-p38 MAPK pathway. Int J Mol Sci. 2018;19(12):3964. doi: 10.3390/ijms19123964, PMID 30544880.

Lam NYS, Truong D, Burmeister H, Babak MV, Holtkamp HU, Movassaghi S. From catalysis to cancer: toward structure-activity relationships for benzimidazol-2-ylidene-derived n-heterocyclic-carbene complexes as anticancer agents. Inorg Chem. 2018;57(22):14427-34. doi: 10.1021/acs.inorgchem.8b02634. PMID 30406647.

Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003;4(6):889-901. doi: 10.1517/14656566.4.6.889, PMID 12783586.

Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans. 2021;50(41):14498-512. doi: 10.1039/D1DT02909F, PMID 34591055.

Kanaoujiya R, Meenakshi, Srivastava S, Singh R, Mustafa G. Recent advances and application of ruthenium complexes in tumor malignancy. Mater Today Proc. 2023;72:2822-7. doi: 10.1016/j.matpr.2022.07.098.

Al-Wahish MA, Awwadi FF, Al-Shwieki RK, Hodali HA. Ruthenium(II) complexes with 8-(diphenylphosphino)quinoline: synthesis, spectroscopic properties, and single-crystal X-ray structures. Inorg Nano Met Chem. 2017;47(5):655-60. doi: 10.1080/15533174.2016.1212225.

Awwadi FF, Hodali HA, Hodali HA. Synthesis, spectroscopic properties and single crystal x-ray structure of dithiocyanato-N-bis[8-(diphenylphosphino)-quinoline]ruthenium(II). Jordan J Chem. 2022;17(2):85-9. doi: 10.47014/17.2.3.

Abusamra YA, Scuruchi M, Habibatni S, Maammeri Z, Benayache S, D’Ascola A. Evaluation of putative cytotoxic activity of crude extracts from onopordum acanthium leaves and spartium junceum flowers against the U-373 glioblastoma cell line. Pak J Pharm Sci. 2015;28(4):1225-32. PMID 26142501.

Bajes HR, Oran SA, Bustanji YK. Chemical composition and antiproliferative and antioxidant activities of methanolic extract of Alcea setosa A. Malvaceae. Res J Pharm Technol. 2021;14(12):6447-54. doi: 10.52711/0974-360X.2021.01115.

Hu H, Zhang H, Zhong R, Yang Y, Huang C, Chen J. Synthesis, RNA-sequence and evaluation of anticancer efficacy of ruthenium(II) polypyridyl complexes toward HepG2 cells. J Inorg Biochem. 2023;244:112230. doi: 10.1016/j.jinorgbio.2023.112230, PMID 37084581.

Bhamare VS, Kulkarni RM. Photocatalytic degradation of pharmaceutical drug zidovudine by undoped and 5 % barium doped zinc oxide nanoparticles during water treatment: synthesis and characterisation. Int J App Pharm. 2019;11(1):227-36. doi: 10.22159/ijap.2019v11i1.30350.

Sahu VK, Sharma N, Sahu PK, Saraf SA. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site-specific delivery of ranitidine hydrochloride. Int J App Pharm. 2017;9(3):15-9. doi: 10.22159/ijap.2017v9i3.16137.

Kostova I. Ruthenium complexes as anticancer agents. Curr Med Chem. 2006;13(9):1085-107. doi: 10.2174/092986706776360941, PMID 16611086.

Kanaoujiya R, Meenakshi, Srivastava S, Singh R, Mustafa G. Recent advances and application of ruthenium complexes in tumor malignancy. Mater Today Proc. 2023;72:2822-7. doi: 10.1016/j.matpr.2022.07.098.

Wilke NL, Burmeister H, Frias C, Ott I, Prokop A. Ruthenium complex HB324 induces apoptosis via a mitochondrial pathway with an upregulation of Harakiri and overcomes cisplatin resistance in neuroblastoma cells in vitro. Int J Mol Sci. 2023;24(2):952. doi: 10.3390/ijms24020952, PMID 36674465.

Huang C, Zhang H, Yang Y, Liu H, Chen J, Wang Y. Synthesis, characterization, molecular docking, RNA-sequence and anticancer efficacy evaluation in vitro of ruthenium(II) complexes on B16 cells. J Inorg Biochem. 2023;247:112329. doi: 10.1016/j.jinorgbio.2023.112329, PMID 37478780.

Zhang SQ, Meng TT, Li J, Hong F, Liu J, Wang Y. Near-IR/visible-emitting thiophenyl-based Ru(II) complexes: efficient photodynamic therapy, cellular uptake, and DNA binding. Inorg Chem. 2019;58(20):14244-59. doi: 10.1021/acs.inorgchem.9b02420, PMID 31595752.

Chen BC, Lu JJ, Jiang N, Ma XR, Li RT, Ye RR. Synthesis, characterization and antitumor mechanism investigation of ruthenium (II) polypyridyl complexes with artesunate moiety. J Biol Inorg Chem. 2021;26(8):909-18. doi: 10.1007/s00775-021-01901-8, PMID 34545414.

Anitha P, Bhargavi J, Sravani G, Aruna B, Ramkanth S. Recent progress of dendrimers in drug delivery for cancer therapy. Int J App Pharm. 2018;10(5):34-42, doi: 10.22159/ijap.2018v10i5.27075.

Balakrishnan SK, Dass SK, Rajendran HA, Savrimuthu I. Cytotoxicity and antimicrobial activity of mono-, di-and trinuclear ruthenium (II) Polypyridine complexes. Int J Pharm Pharm Sci. 2015;7:317-21.

Kahrovic E, Pavelic SK. Antiproliferative effect and selectivity of sodium dichloro-bis [n-phenyl-5-chloro-salicylideneiminato-n, O] ruthenate (III) in vitro. Int J Pharm Pharm Sci. 2015;7:86-8.

Published

07-11-2023

How to Cite

J. SAADH, M., & AL-WAHISH, M. A. (2023). EVALUATION OF THE POTENTIAL CYTOTOXICITY OF RUTHENIUM COMPLEX II AGAINST U-373 GLIOBLASTOMA CELLS. International Journal of Applied Pharmaceutics, 15(6), 218–221. https://doi.org/10.22159/ijap.2023v15i6.48940

Issue

Section

Original Article(s)