FOSAMPRENAVIR CALCIUM LOADED DENDRIMERS: FORMULATION DEVELOPMENT, EVALUATION AND HEMOLYTIC TOXICITY STUDIES
DOI:
https://doi.org/10.22159/ijap.2023v15i6.49040Keywords:
HIV, AIDS, Fosamprenavir calcium, Dendrimers, Conjugates, Disease, Toxicity, HemolysisAbstract
Objective: Dendrimers are the three-dimensional polymeric architectural motif which bestows an advanced platform for drug delivery and drug targeting. Dendrimers are a novel cargo system that can accommodate larger amounts of the drug in its structure by conjugating the drug with terminal amine functional groups. The present work was designed to develop Fosamprenavir calcium-loaded 5th generation poly (propylene imine) (5G PPI) dendrimers for effective treatment of Human immunodeficiency virus.
Methods: The drug loading was carried out using a direct method with continuous stirring for 48 h. The sample was characterized using different analytical techniques and also evaluated for drug entrapment, drug release, and release kinetics. The hemolytic toxicity studies were also performed and evaluated based on % hemolysis and surface morphology of RBCs after incubating with the prepared formulation.
Results: The Fourier transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectral analysis confirms the conjugation of the Fosamprenavir calcium and dendrimers. Differential scanning calorimetry analysis (DSC) also confirmed the conjugation of the drug with dendrimers. Scanning electron microscopy (SEM) images showcased the spherical floral arrangement of the dendrimer structure. The drug entrapment studies revealed 69.83±0.31% of the drug encapsulated in the dendrimer structure. The drug release studies showed 80.18±0.65% in phosphate buffer pH 7.4 and 68.09±1.78% in acetate buffer pH 5.0. The drug release kinetics showed that the Higuchi release pattern was followed for the release pattern of pH 5 and pH 7.4. The hemolysis study revealed that the conjugation of the drug with 5G PPI dendrimers drastically reduces the hemolysis.
Conclusion: Thus, from the studies, it can be concluded that an efficient drug delivery system can be developed for the anti-retroviral drug Fosamprenavir calcium by loading on 5G PPI dendrimers.
Downloads
References
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548(1):707-20. doi: 10.1016/j.ijpharm.2018.07.030, PMID 30012508.
Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276X-9-247, PMID 24994950.
Mishra V, Kesharwani P, Amin MC, Iyer A. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic Press; 2017.
Nath J. Dendrimers: a review on its snythesis, types, properties and applications. Int J Curr Pharm Sci. 2022;14(2):21-5. doi: 10.22159/ijcpr.2022v14i2.1964.
Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1-2):380-90. doi: 10.1016/j.ijpharm.2013.11.043, PMID 24291772.
Mishra V, Gupta U, Jain NK. Surface-engineered dendrimers: a solution for toxicity issues. J Biomater Sci Polym Ed. 2009;20(2):141-66. doi: 10.1163/156856208X386246, PMID 19154667.
Yellepeddi VK, Ghandehari H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin Drug Deliv. 2019;16(10):1051-61. doi: 10.1080/17425247.2019.1656607, PMID 31414922.
Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol. 2017;8:261. doi: 10.3389/fphar.2017.00261, PMID 28559844.
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel). 2019;13(1):65. doi: 10.3390/ma13010065, PMID 31877717.
Murugan E, Geetha Rani DP, Srinivasan K, Muthumary J. New surface hydroxylated and internally quaternised poly(propylene imine) dendrimers as efficient biocompatible drug carriers of norfloxacin. Expert Opin Drug Deliv. 2013;10(10):1319-34. doi: 10.1517/17425247.2013.801957, PMID 23789895.
Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300-14. doi: 10.1016/j.drudis.2017.06.009, PMID 28697371.
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today. 2016;21(5):766-78. doi: 10.1016/j.drudis.2016.02.006, PMID 26891979.
Kaur A, Jain K, Mehra NK, Jain NK. Development and characterization of surface-engineered PPI dendrimers for targeted drug delivery. Artif Cells Nanomed Biotechnol. 2017;45(3):414-25. doi: 10.3109/21691401.2016.1160912, PMID 27027686.
Crowe SM, Katlama C, Murphy R. Fosamprenavir. In: Kucers. The use of antibiotics. CRC Press; 2017. p. 4104-20.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021548s031,022116s015lbl.pdf [Last accessed on 20 May 2023]
Aljabali AA, Obeid MA, Bashatwah RM, Serrano Aroca A, Mishra V, Mishra Y. Nanomaterials and their impact on the immune system. Int J Mol Sci. 2023;24(3):2008. doi: 10.3390/ijms24032008, PMID 36768330.
Mishra V, Gupta U, Jain NK. Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie. 2010;65(12):891-5. doi: 10.1691/ph.2010.9385, PMID 21284258.
Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J. 2021;158. doi: 10.1016/j.eurpolymj.2021.110683.
Kesharwani P, Mishra V, Jain NK. Generation dependent hemolytic profile of folate engineered poly (propyleneimine) dendrimer. J Drug Deliv Sci Technol. 2015;28:1-6. doi: 10.1016/j.jddst.2015.04.006.
Zhang M, Guo R, Keri M, Banyai I, Zheng Y, Cao M. Impact of dendrimer surface functional groups on the release of doxorubicin from dendrimer carriers. J Phys Chem B. 2014;118(6):1696-706. doi: 10.1021/jp411669k, PMID 24467521.
Chountoulesi M, Naziris N, Pippa N, Pispas S, Demetzos C. Differential scanning calorimetry (DSC): an invaluable tool for the thermal evaluation of advanced chimeric liposomal drug delivery nanosystems. In: Demetzos C, Pippa N, editors. Thermodynamics and biophysics of biomedical nanosystems. Springer, Singapore; 2019. p. 297-337. doi: 10.1007/978-981-13-0989-2_9.
Shi F, Zhuang X, Cui C, Zhang S. Synthesis, characterization and scale inhibition performance evaluation of novel dendrimers with the initiator core of pentaerythritol derivative. Desalination. 2022;528:115632. doi: 10.1016/j.desal.2022.115632.
Kohli S, Pal A, Jain S. Preparation, characterization and evaluation of poly (Lactide–co–glycolide) microspheres for the controlled release of zidovudine. Int J Pharm Pharm Sci. 2017;9(12):70-7. doi: 10.22159/ijpps.2017v9i12.18377.
Youssry M, Al-Ruwaidhi M, Zakeri M, Zakeri M. Physical functionalization of multi-walled carbon nanotubes for enhanced dispersibility in aqueous medium. Emergent Mater. 2020;3(1):25-32. doi: 10.1007/s42247-020-00076-3.
Parashar AK, Gupta AK, Jain NK. Synthesis and characterization of Agiopep-2 anchored pegylated poly propyleneimine dendrimers for targeted drug delivery to glioblastoma multiforme. J Drug Deliv Ther. 2018;8(6-A):74-9.
Jain NK, Tare MS, Mishra V, Tripathi PK. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine. 2015;11(1):207-18. doi: 10.1016/j.nano.2014.09.006, PMID 25262579.
Golshan M, Salami Kalajahi M, Roghani Mamaqani H, Mohammadi M. Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: bioconjugation with folic acid and doxorubicin release kinetics. Applied Organom Chemis. 2017;31(11):e3789. doi: 10.1002/aoc.3789.
Janaszewska A, Lazniewska J, Trzepinski P, Marcinkowska M, Klajnert Maculewicz B. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):330. doi: 10.3390/biom9080330, PMID 31374911.
Cordeiro CF, Bettio I, Trevisan MG. Studies on the characterization and polymorphic stability of fosamprenavir. An Acad Bras Cienc. 2020;92(1):e20181021. doi: 10.1590/0001-3765202020181021, PMID 32401841.
Singh DK, Sahu A, Wani AA, Bharatam PV, Kotimoole CN, Batkulwar KB. Stability behaviour of antiretroviral drugs and their combinations. 10: LC-HRMS, LC-MSn, LC-NMR and NMR characterization of fosamprenavir degradation products and in silico determination of their ADMET properties. Eur J Pharm Biopharm. 2019;142:165-78. doi: 10.1016/j.ejpb.2019.06.018, PMID 31226366.
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin-loaded mannosylated dendrimers. J Drug Target. 2006;14(8):546-56. doi: 10.1080/10611860600825159, PMID 17050121.
Gajbhiye V, Ganesh N, Barve J, Jain NK. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. Eur J Pharm Sci. 2013;48(4-5):668-79. doi: 10.1016/j.ejps.2012.12.027, PMID 23298577.
Monteiro MSSB, Chavez FV, Sebastiao PJ, Tavares MIB. 1H NMR relaxometry and X-ray study of PCL/nevirapine hybrids. Polym Test. 2013;32(3):553-66. doi: 10.1016/j.polymertesting.2013.01.016.
Ramana LN, Sethuraman S, Ranga U, Krishnan UM. Development of a liposomal nanodelivery system for nevirapine. J Biomed Sci. 2010;17(1):57. doi: 10.1186/1423-0127-17-57, PMID 20624325.
Yang S, Liu J, Ping Y, Wang Z, Zhang J, Zhang L. Multi-functionalized single-walled carbon nanotubes as delivery carriers: promote the targeting uptake and antitumor efficacy of doxorubicin. J Incl Phenom Macrocycl Chem. 2022;102(9-10):801-17. doi: 10.1007/s10847-022-01163-0.
Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm. 2020;46(3):412-26. doi: 10.1080/03639045.2020.1724132, PMID 32011185.
Ford SL, Wire MB, Lou Y, Baker KL, Stein DS. Effect of antacids and ranitidine on the single-dose pharmacokinetics of fosamprenavir. Antimicrob Agents Chemother. 2005;49(1):467-9. doi: 10.1128/AAC.49.1.467-469.2005, PMID 15616339.
Rompicherla NC, Joshi P, Shetty A, Sudhakar K, Amin HIM, Mishra Y. Design, formulation, and evaluation of aloe vera gel-based capsaicin transemulgel for osteoarthritis. Pharmaceutics. 2022;14(9):1812. doi: 10.3390/pharmaceutics14091812, PMID 36145560.
Srivastava N, Mishra Y, Mishra V, Ranjan A, Tambuwala MM. Carbon nanotubes in breast cancer treatment: an insight into properties, functionalization, and toxicity. Anticancer Agents Med Chem. 2023;23(14):1606-17. doi: 10.2174/1871520623666230510094850, PMID 37165493.
Srivastava N, Mishra Y, Mishra V. Importance of nanocarriers in colon cancer. In: Mishra N, Garg A, Upmanyu N, editors. Therapeutic nanocarriers in cancer treatment: challenges and future perspective. Singapore: Bentham Science Publishers; 2023. p. 228-54.
Sharma S, Mishra Y, Bisht S, Sharma N, Mishra V. An overview of biomaterial toxicity and excretion. In: Aljabali AA, Pal K. editors. Bionanotechnology: next-generation therapeutic tool. Singapore: Bentham Science Publishers; 2022. p. 1-29.
Published
How to Cite
Issue
Section
Copyright (c) 2023 NEHA SRIVASTAVA, YACHANA MISHRA, VIJAY MISHRA
This work is licensed under a Creative Commons Attribution 4.0 International License.