BIOANALYTICAL OF UPLC METHOD DEVELOPMENT AND VALIDATION OF XANTHORRIZOL AND ITS APPLICATION TO PHARMACOKINETIC STUDY

Authors

  • DENI NOVIZA Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor 42300, Puncak Alam Campus, Selangor, Malaysia. Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Kampus Unand Limau Manis, Padang, Sumatera Barat, Indonesia
  • TOMMY JULIANTO Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor 42300, Puncak Alam Campus, Selangor, Malaysia
  • ABU BAKAR ABDUL MAJEED Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor 42300, Puncak Alam Campus, Selangor, Malaysia https://orcid.org/0000-0003-0183-8107
  • KHURIAH ABDUL HAMID Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor 42300, Puncak Alam Campus, Selangor, Malaysia. Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor 42300, Puncak Alam Campus, Selangor, Malaysia

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49340

Keywords:

Xanthorrhizol, UPLC, Method validation, Rat plasma, Pharmacokinetic study

Abstract

Objective: A simple, straightforward, ultra-performance liquid chromatography (UPLC) with a fluorescence detector method was developed and validated to determine xanthorrhizol in rat plasma. This method was successfully applied to an oral pharmacokinetic study.

Methods: Xanthorrhizol was separated using a C18 column in an isocratic mode using a mobile phase of acetonitrile: water (85:15 v/v) at a 0.4 ml/min flow rate. The fluorescence detector was set at 230 nm excitation and 320 nm emission wavelengths. The method was then applied in the pharmacokinetic study involving 12 Sprague-Dawley rats.

Results: The developed bioanalytical methods were found to be linear in the range of 0.078–5 mg/ml with a correlation coefficient of r2=0.999. The percentage recovery of xanthorrhizol was more than 95%, and the relative standard deviation was less than 2. These results indicate that the method is accurate and precise. The limit of detection (LOD) and limit of quantification (LOQ) of the technique were 0.123 µg/ml and 0.373 µg/ml, respectively. Furthermore, the stability studies demonstrated that xanthorrhizol is stable under various analytical conditions. The pharmacokinetic study revealed that the area under the curve (AUC) was 27.23±19.65 (µg. h/ml), the half-life (t 1/2) was 7.71±2.89 h, the mean residence time (MRT) was 13.86±4.06 h while the maximum concentration (Cmax) was 1.58±0.62 µg/ml, and the time to reach the maximum concentration (Tmax) was 1.33±0.20 h.

Conclusion: The developed bioanalytical method was reliable and successfully met all validation criteria, making it a robust choice for quantifying xanthorrhizol. Therefore, it may be effectively utilized to determine xanthorrhizol in rat plasma following a pharmacokinetic study.

Downloads

Download data is not yet available.

References

Itokawa H, Hirayama F, Funakoshi K, Takeya K. Studies on the antitumor bisabolane sesquiterpenoids isolated from curcuma xanthorrhiza. Chem Pharm Bull (Tokyo). 1985;33(8):3488-92. doi: 10.1248/cpb.33.3488, PMID 4085078.

Pawestri SA, Saifullah Sulaiman TN. The influence of variation of hydroxypropyl methylcellulose and tween 80 concentrations on physical characteristics and physical stabilities gel of water dry extract of temulawak. Int J Curr Pharm Sci 2019;11(6):44-8. doi: 10.22159/ijcpr.2019v11i6.36340.

Ruslay S, Abas F, Shaari K, Zainal Z, Maulidiani, Sirat H. Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC–DAD–ESIMS. Food Chemistry. 2007;104(3):1183-91. doi: 10.1016/j.foodchem.2007.01.067.

Sukandar EY, Kurniati NF, Anggadiredja K, Kamil A. In vitro antibacterial activity of Kaempferia pandurata roxb. and Curcuma xanthorrhiza roxb. extracts in combination with certain antibiotics against MSSA and MRSA. Int J Pharm Pharm Sci. 2016;8(1):6-9.

Batubara I, Julita I, Darusman LK, Muddathir AM, Mitsunaga T. Flower bracts of temulawak (Curcuma xanthorrhiza) for skin care: anti-acne and whitening agents. Procedia Chem. 2015 Mar;14:216-24. doi: 10.1016/j.proche.2015.03.031.

Sukardiman S, Oktaviyanti ND. Immunohistochemical study of Curcuma xantorrhiza roxb. and Morinda citirifolia L. ethanolic extract granules combination in high fat diet induced hyperlipidemia rats. Int J Pharm Pharm Sci. 2014;6(11):142-5.

Choi MA, Kim SH, Chung WY, Hwang JK, Park KK. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochem Biophys Res Commun. 2005;326(1):210-7. doi: 10.1016/j.bbrc.2004.11.020, PMID 15567173.

Hwang JK, Shim JS, Baek NI, Pyun YR. Xanthorrhizol: a potential antibacterial agent from Curcuma xanthorrhiza against Streptococcus mutans. Planta Med. 2000;66(2):196-7. doi: 10.1055/s-0029-1243135, PMID 10763606.

Diana R, Joenoes H, Djais AA. The effect of Curcuma xanthorrhiza ethanol extract on the viability of Streptococcus mutans and Aggregatibacter actinomycetemcomitans (Dental biofilm research: in vitro study). Asian J Pharm Clin Res. 2017;10(17):30-3. doi: 10.22159/ajpcr.2017.v10s5.23087.

Fitri M, Nazar K, Meidyawati R, Azmi R. Antibacterial effect of xanthorrhizol (Curcuma xanthorrhiza roxb.) against the biofilm of Fusobacterium nucleatum. Int J Appl Pharm. 2020;12(2):57-61.

Rukayadi Y, Yong D, Hwang JK. In vitro anticandidal activity of xanthorrhizol isolated from Curcuma xanthorrhiza roxb. J Antimicrob Chemother. 2006;57(6):1231-4. doi: 10.1093/jac/dkl132, PMID 16617064.

Rukayadi Y, Han S, Yong D, Hwang JK. In vitro activity of xanthorrhizol against Candida glabrata, C. guilliermondii, and C. parapsilosis biofilms. Med Mycol. 2011;49(1):1-9. doi: 10.3109/13693786.2010.492482, PMID 20560862.

Rukayadi Y, Hwang JK. In vitro anti-malassezia activity of xanthorrhizol isolated from Curcuma xanthorrhiza roxb. Lett Appl Microbiol. 2007;44(2):126-30. doi: 10.1111/j.1472-765X.2006.02062.x, PMID 17257249.

Rukayadi Y, Hwang JK. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett Appl Microbiol. 2006;42(4):400-4. doi: 10.1111/j.1472-765X.2006.01876.x, PMID 16599995.

Kim S, Kook KE, Kim C, Hwang JK. Inhibitory effects of Curcuma xanthorrhiza supercritical extract and xanthorrhizol on LPS-induced inflammation in HGF-1 cells and RANKL-induced osteoclastogenesis in RAW264.7 cells. J Microbiol Biotechnol. 2018;28(8):1270-81. doi: 10.4014/jmb.1803.03045, PMID 29996622.

Lim CS, Jin DQ, Mok H, Oh SJ, Lee JU, Hwang JK. Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. J Neurosci Res. 2005 Dec 15;82(6):831-8. doi: 10.1002/jnr.20692, PMID 16273545.

Sang Kook L, Hong CH, Huh SK, Kim SS, Oh OJ, Min HY. Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) activity in mouse macrophage cells. J Environ Pathol Toxicol Oncol. 2002;21(2):1-8. PMID: 12086400.

Chung WY, Park JH, Kim MJ, Kim HO, Hwang JK, Lee SK. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor- B. Carcinogenesis. 2007;28(6):1224-31. doi: 10.1093/carcin/bgm005.

Cho JY, Hwang JK, Chun HS. Xanthorrhizol attenuates dextran sulfate sodium-induced colitis via the modulation of the expression of inflammatory genes in mice. Life Sci. 2011;88(19-20):864-70. doi: 10.1016/j.lfs.2011.03.007, PMID 21419136.

Jantan I, Saputri FC, Qaisar MN, Buang F. Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evid Based Complement Alternat Med. 2012;2012:438356. doi: 10.1155/2012/438356, PMID 23243446.

Simamora A, Timotius KH, Yerer MB, Setiawan H, Munim A. Xanthorrhizol, a potential anticancer agent, from curcuma xanthorrhiza roxb phytomedicine. 2022;105:154359. doi: 10.1016/j.phymed.2022.154359, PMID 35933899.

Jantan I, Raweh SM, Sirat HM, Jamil S, Mohd Yasin YH, Jalil J. Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine. 2008;15(4):306-9. doi: 10.1016/j.phymed.2007.08.002, PMID 17913483.

Kim SH, Hong KO, Chung WY, Hwang JK, Park KK. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription. Toxicol Appl Pharmacol. 2004;196(3):346-55. doi: 10.1016/j.taap.2004.01.002, PMID 15094305.

Oh HI, Shim JS, Gwon SH, Kwon HJ, Hwang JK. The effect of xanthorrhizol on the expression of matrix metalloproteinase-1 and type-I procollagen in ultraviolet-irradiated human skin fibroblasts. Phytother Res. 2009;23(9):1299-302. doi: 10.1002/ptr.2768, PMID 19277961.

Shargel L, Yu ABC. Editors. In: Applied biopharmaceutics and pharmacokinetics, 7th. New York: McGraw-Hill Education; 2016.

Choi S, Kim M, Kim C, Hwang JK, Kang W. Quantitative determination of xanthorrhizol in rat plasma by HPLC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2017;132:56-9. doi: 10.1016/j.jpba.2016.09.043, PMID 27693953.

Kang J, Won J, Hwang JK, Kang W. Bioavailability of xanthorrhizol following oral administration of a supercritical extract of Java turmeric. Food Sci Biotechnol. 2022;31(10):1309-13. doi: 10.1007/s10068-022-01124-w, PMID 35992318.

Oon SF, Nallappan M, Kassim NK, Shohaimi S, Sa’ariwijaya MS, Tee TT. Hypolipidemic activities of xanthorrhizol purified from centrifugal TLC. Biochem Biophys Res Commun. 2016;478(3):1403-8. doi: 10.1016/j.bbrc.2016.08.136, PMID 27576204.

Nurcholis W, Munshif AA, Ambarsari L. Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma xanthorrhiza accessions from indonesia. Rev Bras Farmacogn. 2018;28(1):44-9. doi:10.1016/j.bjp.2017.11.001

Aguilar MI, Osorio N, Bernal I, Navarrete A, Bye R. Development and validation of a liquid chromatography method for quantification of xanthorrhizol in roots of Iostephane heterophylla (Cav.) benth. ex Hemsl. J AOAC Int. 2007;90(4):892-6. doi: 10.1093/jaoac/90.4.892, PMID 17760325.

Yu W, Wen D, Cai D, Zheng J, Gan H, Jiang F. Simultaneous determination of curcumin, tetrahydrocurcumin, quercetin, and paeoniflorin by UHPLC-MS/MS in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2019;172:58-66. doi: 10.1016/j.jpba.2019.04.033, PMID 31029801.

Iqbal M, Ezzeldin E, Herqash RN, Anwer MK, Azam F. Development and validation of a novel UPLC-MS/MS method for quantification of delafloxacin in plasma and aqueous humour for pharmacokinetic analyses. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1138(2457):121961. doi: 10.1016/j.jchromb.2019.121961, PMID 31931327.

Zhang M, Luo L, Dai X, He Y, Ma J. Determination of oleandrin and adynerin in rat plasma by UPLC–MS/MS and their pharmacokinetic study. Arab J Chem. 2022;15(12):104369. doi: 10.1016/j.arabjc.2022.104369.

Zheng J, Zhang R, Shao C, Hu Z, Wang D, Yu T. Development and validation of a RP-HPLC method with fluorescence detection for simultaneous determination of 10-methoxycamptothecin and its metabolite 10-hydroxycamptothecin in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;903:81-7. doi: 10.1016/j.jchromb.2012.07.001, PMID 22824730.

Ivanov AV, Dubchenko EA, Kruglova MP, Virus ED, Bulgakova PO, Alexandrin VV. Determination of S-adenosylmethionine and S-adenosylhomocysteine in blood plasma by UPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1124:366-74. doi: 10.1016/ j.jchromb.2019.06.032, PMID 31295723.

Aboras SI, Korany MA, Abdine HH, Ragab MAA, El Diwany A, Agwa MM. HPLC with fluorescence detection for the bioanalysis and pharmacokinetic study of doxorubicin and prodigiosin loaded on eco-friendly casein nanomicelles in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1187:123043. doi: 10.1016/j.jchromb.2021.123043, PMID 34837816.

Yu M, Hassan HE, Ibrahim A, Bauer KS, Kelly DL, Wang JB. Simultaneous determination of l-tetrahydropalmatine and cocaine in human plasma by simple UPLC-FLD method: application in clinical studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;965:39-44. doi: 10.1016/j.jchromb.2014.06.020, PMID 24996068.

Farthing CA, Farthing DE, Koka S, Larus T, Fakhry I, Xi L. A simple and sensitive HPLC fluorescence method for determination of tadalafil in mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(28):2891-5. doi: 10.1016/j.jchromb.2010.07.022, PMID 20801090.

Hafiz M, Hamid KA, Affandi MM. AA, Saleh L, MJS. A simple and sensitive HPLC method for the determination of insulin in rat plasma and its application in pharmacokinetic study. Int J Pharm Pharm Sci. 2013;5Suppl 2:133-7.

Susanti M, Harahap Y, Itam A, Dachriyanus. Development and validation of UPLC-UV method for the determination of rubraxanthone in human plasma. J Pharm Pharmacognocy Res. 2019;7(5):381-8.

Yap SP, Julianto T, Wong JW, Yuen KH. Simple high-performance liquid chromatographic method for the determination of tocotrienols in human plasma. J Chromatogr B Biomed Sci Appl. 1999;735(2):279-83. doi: 10.1016/s0378-4347(99)00385-0, PMID 10670741.

USFDA. Bioanalytical method validation guidance for industri; 2016.

Guo Y, Yao Q, Kong D, Xue J, Yong L, Li J. Development and validation of a highly sensitive HPLC-MS/MS method for the QAP14, a novel potential anti-cancer agent, in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2020;189:113487. doi: 10.1016/j.jpba.2020.113487, PMID 32759036.

Satyavert GS, Gupta S, Nair AB, Attimarad M. Development and validation of bioanalytical method for the determination of hydrazinocurcumin in rat plasma and organs by HPLC-UV. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1156:122310. doi: 10.1016/j.jchromb.2020.122310, PMID 32835908.

Attimarad MV, Nair AB, Aldhubaib BE. Development of liquid chromatographic method for the simultaneous determination of metformin and miglitol in human plasma: application to pharmacokinetic studies. J Iran Chem Soc. 2015;12(9):1629-36. doi: 10.1007/s13738-015-0637-5.

Najmi A Rehman Z, Alhazmi HA, Albratty MM, Majrashi NH, Hakami KM. Optimization of chromatographic conditions with QbD for method development and validation of bosutinib by HPLC: applications in dosage forms and rat plasma analysis. Separations. 2023;10(6):346.

Affandi MMR, Abdullah A, Julianto T, Majeed ABA. Development of simple high performance liquid chromatographic method for the determination of astaxanthin in human plasma. Food Sci Technol Res. 2012;18(1):107-13. doi: 10.3136/fstr.18.107.

Published

07-01-2024

How to Cite

NOVIZA, D., JULIANTO, T., ABDUL MAJEED, A. B., & HAMID, K. A. (2024). BIOANALYTICAL OF UPLC METHOD DEVELOPMENT AND VALIDATION OF XANTHORRIZOL AND ITS APPLICATION TO PHARMACOKINETIC STUDY. International Journal of Applied Pharmaceutics, 16(1), 186–193. https://doi.org/10.22159/ijap.2024v16i1.49340

Issue

Section

Original Article(s)