LIGAND-BASED VIRTUAL SCREENING OF FDA-APPROVED DRUGS TO IDENTIFY NEW INHIBITORS AGAINST LACTATE DEHYDROGENASE ENZYME OF MALARIA PARASITES

Authors

  • HASANAIN ABDULHAMEED ODHAR Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq https://orcid.org/0000-0002-5052-2080
  • AHMED FADHIL HASHIM Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
  • SUHAD SAMI HUMADI Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
  • SALAM WAHEED AHJEL Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq https://orcid.org/0000-0002-1824-5829

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49382

Keywords:

Ligand-based virtual screening, Repurpose, Docking, Dynamics simulation, Novobiocin, Plasmodium falciparum lactate dehydrogenase

Abstract

Objective: The aim of this study is to computationally repurpose FDA-approved drugs as potential inhibitors of the Plasmodium falciparum lactate dehydrogenase (PfLDH) by competing with the cofactor NADH.

Methods: In this in silico study, we have virtually screened a library of FDA-approved drugs for structural similarity to the dihydro nicotinamide adenine dinucleotide (NADH). Then, the top hits were further assessed for clinical safety and by application of molecular docking and dynamics simulation.

Results: Ligand-based virtual screening reports that the antibiotic Novobiocin has a good similarity to the cofactor NADH with a score of 0.7. Also, molecular docking study indicates that Novobiocin may has the ability to interact with PfLDH enzyme with a docking energy of-8.8 Kcal/mol. However, during molecular dynamics (MD) simulation, the mean ligand proximity root mean square deviation (RMSD) and binding energy for Novobiocin were 4.3 Angstrom and-37.45 Kcal/mol, respectively. These MD simulation parameters are inferior to those recorded for NADH molecule during 50 nanosecond intervals.

Conclusion: The antibiotic Novobiocin may serve as a potential lead candidate toward the design of novel antimalarial agents. However, further evaluation of Novobiocin may be recommended to affirm its capacity against PfLDH enzyme.

Downloads

Download data is not yet available.

References

Ayogu Ee, Anosike C, Azumara Si, Nnia Ani Dn. Prevalence of asymptomatic malaria and anemia among primary school children in Enugu State, Nigeria. Int J Pharm Pharm Sci. 2023 Aug 1;15(8):14-8. doi: 10.22159/ijpps.2023v15i8.48216.

Tjitraresmi A, Moektiwardoyo M, Susilawati Y. Medicinal herbs used in management of malaria in pamotan village community, kalipucang District, Pangandaran Regency, West Java, Indonesia. Int J App Pharm. 2021 Dec 11;13Special Issue 4:52-8. doi: 10.22159/ijap.2021.v13s4.43816.

Conrad Md, Rosenthal Pj. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019 Oct 1;19(10):E338-51. doi: 10.1016/S1473-3099(19)30261-0, PMID 31375467.

Ramteke S, Ubnare R, Dubey N, Singh A. Intranasal delivery of artemether for the treatment of cerebral malaria. Int J Pharm Pharm Sci. 2018 Sep 1;10(9):9-14. doi: 10.22159/ijpps.2018v10i9.25408.

Mawson Ar. The pathogenesis of malaria: a new perspective. Pathog Glob Health. 2013 Apr;107(3):122-9. doi: 10.1179/2047773213y.0000000084, PMID 23683366.

Langhorne J, Ndungu Fm, Sponaas Am, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008 Jul;9(7):725-32. doi: 10.1038/Ni.F.205, PMID 18563083.

Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: a brief review. Korean J Parasitol. 2009;47(2):93-102. doi: 10.3347/kjp.2009.47.2.93, PMID 19488414.

Laurens Mb. Rts, S/As01 vaccine (Mosquirixtm): an overview. Hum Vaccin Immunother. 2020 Mar 3;16(3):480-9. doi: 10.1080/21645515.2019.1669415, PMID 31545128.

Datoo Ms, Natama Hm, Some A, Bellamy D, Traore O, Rouamba T, Et Al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in burkina faso: a phase 1/2b randomised controlled trial. Lancet Infect Dis. 2022 Dec 1;22(12):1728-36. doi: 10.1016/S1473-3099(22)00442-X.

Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the icemr network. Am J Trop Med Hyg. 2015;93(3)Suppl:57-68. doi: 10.4269/ajtmh.15-0007, PMID 26259943.

Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Et Al. Spread of artemisinin resistance in plasmodium falciparum malaria. N Engl J Med. 2014 Jul 31;371(5):411-23. doi: 10.1056/Nejmoa1314981, PMID 25075834.

Oboh MA, Ndiaye D, Antony HA, Badiane AS, Singh US, Ali NA, Et Al. Status of artemisinin resistance in malaria parasite plasmodium falciparum from molecular analyses of the kelch13 gene in Southwestern Nigeria. Biomed Res Int. 2018;2018:2305062. doi: 10.1155/2018/2305062, PMID 30402465.

Abd Rahman AN, Zaloumis S, Mccarthy JS, Simpson JA, Commons RJ. Scoping review of antimalarial drug candidates in phase i and ii drug development. Antimicrob Agents Chemother. 2022;66(2). doi: 10.1128/Aac.01659-21.

Singh V, Kaushal DC, Rathaur S, Kumar N, Kaushal NA. Cloning, overexpression, purification and characterization of plasmodium knowlesi lactate dehydrogenase. Protein Expr Purif. 2012 Aug;84(2):195-203. doi: 10.1016/J.Pep.2012.05.008, PMID 22683723.

Singh R, Bhardwaj V, Purohit R. Identification of a novel binding mechanism of quinoline-based molecules with lactate dehydrogenase of plasmodium falciparum. J Biomol Struct Dyn. 2021;39(1):348-56. doi: 10.1080/07391102.2020.1711809, PMID 31903852.

Read JA, Wilkinson KW, Tranter R, Sessions RB, Brady RL. Chloroquine binds in the cofactor binding site of plasmodium falciparum lactate dehydrogenase. J Biol Chem. 1999 Apr 9;274(15):10213-8. doi: 10.1074/Jbc.274.15.10213, PMID 10187806.

Penna Coutinho J, Cortopassi WA, Oliveira AA, França TCC, Krettli AU. Antimalarial activity of potential inhibitors of plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. Plos One. 2011;6(7):E21237. doi: 10.1371/journal.pone.0021237, PMID 21779323.

Gan JH, Liu JX, Liu Y, Chen SW, Dai WT, Xiao ZX, Et Al. Drug rep: an automatic virtual screening server for drug repurposing. Acta Pharmacol Sin. 2023 Apr 1;44(4):888-96. doi: 10.1038/S41401-022-00996-2, PMID 36216900.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, ET Al. Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/Jcc.21256, PMID 19399780.

Eberhardt J, Santos Martins D, Tillack Af, Forli S. Autodock vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891-8. doi: 10.1021/Acs.jcim.1c00203, PMID 34278794.

Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut Balik D, ET Al. The structure of lactate dehydrogenase from plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996;3(11):912-5. doi: 10.1038/Nsb1196-912, PMID 8901865.

Carbone J, Ghidini A, Romano A, Gentilucci L, Musiani F. Pacdock: a web server for positional distance-based and interaction-based analysis of docking results. Molecules. 2022 Oct 1;27(20). doi: 10.3390/molecules27206884, PMID 36296477.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, ET Al. Ucsf chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/Jcc.20084, PMID 15264254.

Krieger E, Vriend G. Yasara view–molecular graphics for all devices–from smartphones to workstations. Bioinformatics. 2014 Oct 15;30(20):2981-2. doi: 10.1093/bioinformatics/btu426, PMID 24996895.

Hashim AF, Odhar HA, Ahjel SW. Molecular docking and dynamics simulation analysis of nucleoprotein from the crimea-congo hemorrhagic fever virus strain baghdad-12 with fda approved drugs. Bioinformation. 2022;18(5):442-9. doi: 10.6026/97320630018442, PMID 36945218.

Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Molecular docking and dynamics simulation analysis of the human fxiia with compounds from the mcule database. Bioinformation. 2023;19(2):160-6. doi: 10.6026/97320630019160, PMID 37814681.

Abdulhameed Odhar H, Hashim AF, Humadi SS, Ahjel SW. Design and construction of multi-epitope-peptide vaccine candidate for rabies virus. Bioinformation. 2023;19(2):167-77. doi: 10.6026/97320630019167, PMID 37814687.

Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. am1-bcc model: ii. parameterization and validation. J Comput Chem. 2002 Dec;23(16):1623-41. doi: 10.1002/Jcc.10128, PMID 12395429.

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004 Jul 15;25(9):1157-74. doi: 10.1002/Jcc.20035, PMID 15116359.

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. Ff14sb: improving the accuracy of protein side chain and backbone parameters from Ff99sb. J Chem Theory Comput. 2015 Jul 7;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255, PMID 26574453.

Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Et Al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009 Feb 23;49(2):444-60. doi: 10.1021/Ci800293n, PMID 19434845.

Odhar HA, Ahjel SW, Albeer Aama, Hashim AF, Rayshan AM, Humadi SS. Molecular docking and dynamics simulation of FDA-approved drugs with the main protease from 2019 novel coronavirus. Bioinformation. 2020 Mar 31;16(3):236-44. doi: 10.6026/97320630016236, PMID 32308266.

Published

07-01-2024

How to Cite

ODHAR, H. A., HASHIM, A. F., HUMADI, S. S., & AHJEL, S. W. (2024). LIGAND-BASED VIRTUAL SCREENING OF FDA-APPROVED DRUGS TO IDENTIFY NEW INHIBITORS AGAINST LACTATE DEHYDROGENASE ENZYME OF MALARIA PARASITES. International Journal of Applied Pharmaceutics, 16(1), 255–260. https://doi.org/10.22159/ijap.2024v16i1.49382

Issue

Section

Original Article(s)