EXPLORATION OF ANTI-MELANOMA POTENTIAL OF PHYTOCHEMICALS FROM NYCTANTHES ARBORTRISTIS THROUGH COMPUTATIONAL STUDIES

Authors

  • SHARMISTHA BANERJEE BME and BI, UTD, Chhattisgarh Swami Vivekanand Technical University, Newai, Bhilai, CG-491107, India
  • MEENAKSHI BHARKATIYA Bhupal Nobles Institute of Pharmaceutical Sciences, Bhupal Nobles University, Udaipur-313001, India
  • SURADA PRAKASH RAO Columbia Institute of Pharmacy, Raipur, CG, India https://orcid.org/0000-0003-4753-0570
  • ISHITA BAGHEL Foothill High School, 4375, Foothill Road, Pleasanton, CA-94588, India
  • MADHURI BAGHEL Apollo College of Pharmacy, Anjora, Durg, CG-491001, India https://orcid.org/0000-0001-8489-1821

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49834

Keywords:

Skin cancer, Nyctanthesarbor-tristis, Dyclonine, Vemurafenib, Molecular docking, Induced fit docking

Abstract

Objective: The goal of the current research is to identify the dominant phytochemical from the plantNyctanthesarbor-tristis Linn. and to investigate their binding affinities against the proteins BRaf Kinase mutant (3OG7) and Hsp90 Chaperone (2VCJ) that causesmelanoma.

Methods: In this work, Schrodinger software was utilized to investigate the anti-cancer potential of phytochemicals Nyctanthesarbor-tristis against specific target proteins, namely BRaf Kinase mutant (3OG7) and Hsp90 Chaperone (2VCJ) Inhibitors.

Results: Based on the outcome of the docking investigation, phytochemicals that exhibited highest binding affinity to the specified protein targets were subjected to induced fit docking and MM-GBSA computations using the Schrodinger Maestro version 2021.2 in prime module. According to the analysis, the compounds with the highest binding affinities for 2VCJ and 3OG7 are Arbortristoside D and Nicotiflorin respectively. The compound that interacted with both the proteins wasArbortristoside B. These phytochemicals appear to be more effective to the FDA-approved V600E-BRaf inhibitor Vemurafenib and Hsp90 Chaperone Inhibitor Diclonine.

Conclusion: One of the most common, deadly, and dangerous malignant diseases with a high global prevalence rate is melanoma (skin cancer). The present study may prove more helpful in developing an ideal targeted drug delivery system of phytochemicals obtained from plant Nyctanthesarbor-tristisfor treatment of melanoma. This suggests that these substances could be evolved into highly effective anti-melanoma drugs.

Downloads

Download data is not yet available.

Author Biography

MADHURI BAGHEL, Apollo College of Pharmacy, Anjora, Durg, CG-491001, India

Pharmacy

References

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016 Jun 2;66(4):271-89. doi: 10.3322/caac.21349, PMID 27253694.

Cummins DL, Cummins JM, Pantle H, Silverman MA, Leonard AL, Chanmugam A. Cutaneous malignant melanoma. Mayo Clin Proc. 2006 Apr;81(4):500-7. doi: 10.4065/81.4.500, PMID 16610570.

Markovic SN, Erickson LA, Rao RD, Weenig RH, Pockaj BA, Bardia A. Malignant melanoma in the 21st century, part 1: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc. 2007;82(3):364-80. doi: 10.4065/82.3.364, PMID 17352373.

Libra M, Malaponte G, Navolanic PM, Gangemi P, Bevelacqua V, Proietti L. Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle. 2005 Sep 23;4(10):1382-4. doi: 10.4161/cc.4.10.2026, PMID 16096377.

Guevara Canales JO, Gutierrez Morales MM, Sacsaquispe Contreras SJ, Sanchez Lihon J, Morales Vadillo R. Malignant melanoma of the oral cavity. Review of the literature and experience in a peruvian population. Med Oral Patol Oral Cir Bucal. 2012 Mar 1;17(2):e206-11. doi: 10.4317/medoral.17477, PMID 22143709.

Vikey AK, Vikey D. Primary malignant melanoma, of head and neck: a comprehensive review of literature. Oral Oncol. 2012;48(5):399-403. doi: 10.1016/j.oraloncology.2011.12.014, PMID 22265336.

Jin S, Kim KC, Kim JS, Il Jang KI, Hyun TK. Anti-melanoma activities and phytochemical compositions of sorbus commixta fruit extracts. Plants (Basel). 2020 Aug 21;9(9):1-9. doi: 10.3390/plants9091076, PMID 32825598.

Parekh S, Soni A. Nyctanthes arbor-tristis: a comprehensive review on its pharmacological, antioxidant, and anticancer activities. J Appl Biol Biotechnol. 2020 Jan 10;8(1):95-104.

Jensen SR, Franzyk H, Wallander E. Chemotaxonomy of the oleaceae: iridoids as taxonomic markers. Phytochemistry. 2002 Jun 1;60(3):213-31. doi: 10.1016/s0031-9422(02)00102-4, PMID 12031440.

Rani C, Chawla S, Mangal M, Mangal AK, Kajla S, Dhawan AK. Nyctanthes arbor-tristis linn. (Night Jasmine): a sacred ornamental plant with immense medicinal potentials. Indian J Tradit Knowl. 2012 Jul 1;11(3):427-35.

Timsina B, Nadumane VK. Purification and evaluation of bioactive fractions for anticancer potentials from the flowers and leaves of Nyctanthes arbor-tristis L. Chiang Mai J Sci. 2016 Jul 2;43(1):100-11.

Khatune NA, Mosaddik MA, Haque ME. Antibacterial activity and cytotoxicity of Nyctanthes arbor-tristis flowers. Fitoterapia. 2001 Jun 1;72(4):412-4. doi: 10.1016/s0367-326x(00)00318-x, PMID 11395266.

Jang S, Atkins MB. Treatment of BRAF-mutant melanoma: the role of vemurafenib and other therapies. Clin Pharmacol Ther. 2014 Sep 30;95(1):24-31. doi: 10.1038/clpt.2013.197, PMID 24080641.

Zhan Y, Dahabieh MS, Rajakumar A, Dobocan MC, M’Boutchou MN, Goncalves C. The role of eIF4E in response and acquired resistance to vemurafenib in melanoma. J Invest Dermatol. 2015 Jan 23;135(5):1368-76. doi: 10.1038/jid.2015.11, PMID 25615552.

Martinez Garcia M, Banerji U, Albanell J, Bahleda R, Dolly S, Kraeber Bodere F. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin Cancer Res. 2012 Sep 1;18(17):4806-19. doi: 10.1158/1078-0432.CCR-12-0742, PMID 22761467.

McCarthy MM, Pick E, Kluger Y, Gould Rothberg B, Lazova R, Camp RL. HSP90 as a marker of progression in melanoma. Ann Oncol. 2008 Mar;19(3):590-4. doi: 10.1093/annonc/mdm545, PMID 18037622.

Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE. 4,5-Diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem. 2008 Jan 24;51(2):196-218. doi: 10.1021/jm701018h, PMID 18020435.

Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Spevak W. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma HHS public Access. 2010 Sep 30;467(3):596-9.

Choi WK, El-Gamal MI, Choi HS, Baek D, Oh CH. New diarylureas and diaryl amides containing 1,3,4-triarylpyrazole scaffold: Synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition, and molecular docking studies. Eur J Med Chem. 2011 Aug 12;46(12):5754-62. doi: 10.1016/j.ejmech.2011.08.013, PMID 22014559.

Tutone M, Virzi A, Almerico AM. Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent. J Theor Biol. 2018;455:147-60. doi: 10.1016/j.jtbi.2018.07.017, PMID 30030079.

Jang MK, Mashima T, Seimiya H. Tankyrase inhibitors target colorectal cancer stem cells via axin-dependent downregulation of c-kit tyrosine kinase. Mol Cancer Ther. 2020 Jun 6;19(3):765-76. doi: 10.1158/1535-7163.MCT-19-0668, PMID 31907221.

Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21(12):681-91. doi: 10.1007/s10822-007-9133-z, PMID 17899391.

Elokely KM, Doerksen RJ. Docking challenge: protein sampling and molecular docking performance. J Chem Inf Model. 2013;53(8):1934-45. doi: 10.1021/ci400040d, PMID 23530568.

Ajay Kumar TV, Athavan AAS, Loganathan C, Saravanan K, Kabilan S, Parthasarathy V. Design, 3D QSAR modeling and docking of TGF-β type I inhibitors to target cancer. Comput Biol Chem. 2018 Oct;76:232-44. doi: 10.1016/j.compbiolchem.2018.07.011, PMID 30077902.

Balachandran P, Kumar VAT, Parthasarathy V. Screening of potential anticancer compounds from sargassum wightii to target breast cancer-specific HER2 receptor using in silico analysis. Nat Prod J. 2016 Feb;6(2):108-15.

Sasmal D, Das S, Basu SP. Phytoconstituents and therapeutic potential of Nyctanthes arbortristis linn. Pharmacogn Rev. 2007 Jan;1(2):344-9.

Agrawal J, Pal A. Nyctanthes arbor-tristis linn–a critical ethnopharmacological review [Linn-a critical ethnopharmacological review]. J Ethnopharmacol. 2013 Apr 19;146(3):645-58. doi: 10.1016/j.jep.2013.01.024, PMID 23376280.

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013 Apr 12;27(3):221-34. doi: 10.1007/s10822-013-9644-8, PMID 23579614.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

Schrodinger Release 2021-2. New York: Desmond, Schrodinger, LLC; 2021.

Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006 Dec 23;49(2):534-53. doi: 10.1021/jm050540c, PMID 16420040.

Schrodinger Release 2021-2. New York: Prime, Schrodinger, LLC; 2021.

Wu Y, Hsieh TC, Wu JM, Wang X, Christopher JS, Pham AH. Elucidating the inhibitory effect of resveratrol and its structural analogs on selected nucleotide-related enzymes. Biomolecules. 2020 Aug 22;10(9):1-17. doi: 10.3390/biom10091223, PMID 32842666.

Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem. 2006 Jul 19;49(16):4805-8. doi: 10.1021/jm060522a, PMID 16884290.

Cumberworth A, Bui JM, Gsponer J. Free energies of solvation in the context of protein folding: implications for implicit and explicit solvent models. J Comput Chem. 2016 Mar 15;37(7):629-40. doi: 10.1002/jcc.24235, PMID 26558440.

Jayasurya BR, Swathy JS, Susha D, Sameer S. Molecular docking and investigation of Boswellia Serrata phytocompounds as cancer therapeutics to target growth factor receptors: an in silico approach. Int J Appl Pharm. 2023 Apr 21;15(4):173-83.

Sarvesh Galgale RZ, Pradeep Kumar A, Nithya M, Susha D, Sharma S. Molecular docking and dynamic simulation-based screening identifies inhibitors of targeted SARS-COV-2, 3-CLPRO and human ACE-2. Int J Appl Pharm. 2023 Aug 23;15(6):297-308.

Kandasamy S, Sahu SK, Kandasamy K. In silico studies on fungal metabolite against skin cancer protein (4,5-Diarylisoxazole HSP90 chaperone). ISRN Dermatol. 2012 Aug;2012:626214. doi: 10.5402/2012/626214, PMID 22991673.

Khanapur M, Avadhanula RK, Setty OH. In vitro antioxidant, antiproliferative, and phytochemical studyin different extracts of Nyctanthesarbortristis flowers. BioMed Res Int. 2014 May 2020;2:291271.

Susan T, Muzaffer A, Purushothaman KK. Inhibitory activity of arbortristoside a on fibrosarcoma in albino rats Arogya. 1986;12:122-30.

Published

07-03-2024

How to Cite

BANERJEE, S., BHARKATIYA, M., PRAKASH RAO, S., BAGHEL, I., & BAGHEL, M. (2024). EXPLORATION OF ANTI-MELANOMA POTENTIAL OF PHYTOCHEMICALS FROM NYCTANTHES ARBORTRISTIS THROUGH COMPUTATIONAL STUDIES. International Journal of Applied Pharmaceutics, 16(2), 166–173. https://doi.org/10.22159/ijap.2024v16i2.49834

Issue

Section

Original Article(s)