DEVELOPMENT OF A REFERENCE SAMPLE FOR RAPID ANALYSIS OF AN ELEMENTAL COMPOSITION OF MEDICINAL PLANT RAW MATERIALS

Authors

  • IVAN A. GAIDASHEV Department of Pharmaceutical and Toxicological Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow-117198, Russian Federation https://orcid.org/0009-0009-2197-8861
  • SYROESHKIN Department of Pharmaceutical and Toxicological Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow-117198, Russian Federation

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49870

Keywords:

Reference sample, Trace element analysis, XRF, X-ray fluorescence analysis, Medicinal plants

Abstract

Objective: Development and validation of a technique for preparation of a reference sample for elemental microanalysis using the XRF technique in terms of repeatability, reproducibility, and optimization of the technique for rapid determination of the elemental composition of medicinal plants based on X-ray fluorescence analysis.

Methods: Samples: fresh shoots of Kalanchoe daigremontiana, ready reference sample "Birch Leaf" LB-1 (A. P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia), and IAEA reference sample SRM 2976 (IAEA, MEL, Monaco). The dispersed fraction was analyzed using a Master Sizer 2000 instrument (Malvern Panalytical, Worcestershire, UK). Elemental analysis using an energy dispersive X-ray fluorescence spectrometer EDX-7000 Shimadzu (Shimadzu Corporation, Kyoto, Japan), GZ-AAS using an Agilent instrument, model 240Z AA instrument (Agilent Technologies, Inc., Santa Clara, USA) with electrothermal atomization and Zeeman background correction, and ICP-MS using an Agilent 7500 CE instrument (Agilent Technologies, Inc., Santa Clara, USA).

Results: By the LALLS method, they were separated by the maximum distribution, which was 63 microns, and a minor fraction of 39 microns. This indicates sufficient homogeneity in the sample. Further, homogeneity was proved by the XRF method by measuring six independent samples obtained by the quartering method. Also, the elemental composition of the reference samples was determined: completely dried, homogenized before sifting, and homogenized after sifting. Further, the obtained reference sample of K. daigremontiana was compared with reference samples: IAEA SRM 2976 and "birch leaf methods: ICP-MS, GZ-AAS, XRF.

Conclusion: The reference sample will allow for rapid analysis of medicinal plant raw materials. Standardization of medicinal plants by the content of microelements will allow observing species differences as well as adjusting the concentrations of microelements for therapeutic purposes using medicinal plants.

Downloads

Download data is not yet available.

References

Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, Li J, Chen HW. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine. 2022 Dec;107:154458. doi: 10.1016/j.phymed.2022.154458. Epub. 2022 Sep 15. PMID: 36152591.

Shrivastav S, Rathore K S, & Prasad N. Formulation and evaluation of dispersible tablets of flavonoid PGAL isolated from Saraca Asoca leaves. Int J App Pharm. 2023;15;(4);125-130. doi: 10.22159/ijap.2023v15i4.47855.

Sriramcharan P, Natarajan J, Raman R, Nagaraju G, Justin A, & Senthil V. A review on green-synthesis of cerium oxide nanoparticles: focus on central nervous system disorders.

Int J App Pharm. 2022;14;(4);102-94. doi: 10.22159/ijap.2022v14i4.44487.

Jyothsna S, Manjula G, Suthari S, Nageswara Rao AS. Qualitative elemental analysis of selected potential anti-asthmatic medicinal plant taxa using EDXRF technique. Heliyon. 2020 Feb 4;6(2):e03260. doi: 10.1016/j.heliyon.2020.e03260. PMID: 32055725; PMCID: PMC7005449.

Tefera W, Liu T, Lu L, Ge J, Webb SM, Seifu W, Tian S. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Ecotoxicol Environ Saf. 2020 Apr 15;193:110245. doi: 10.1016/j.ecoenv.2020.110245. Epub 2020 Feb 21. PMID: 32092577.

Singh VK, Sharma N, Singh V. Application of X‐ray fluorescence spectrometry in plant science: Solutions, threats, and opportunities. X-Ray Spectrometry [Internet]. 2021 Aug 18 [cited 2023 Nov 17];51(3):304–27. Available from: https://doi.org/10.1002/xrs.3260.

Orlić J, Gržetić I, Ilijević K. Effect of sample preparation procedure on standardless wavelength dispersive X-ray fluorescence analysis of plant samples. Spectrochimica Acta Part B: Atomic Spectroscopy [Internet]. 2021 Oct 1[cited 2023 Nov 17];184:106258. Available from: https://doi.org/10.1016/j.sab.2021.106258

El Hosry L, Sok N, Richa R, Al Mashtoub L, Cayot P, Bou-Maroun E. Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. Foods. 2023 Feb 20;12(4);895. doi: 10.3390/foods12040895. PMID: 36832970; PMCID: PMC9956155.

Syroeshkin А, Makarova M, Maksimova T, Pleteneva T, Zlatskiy I. Development Of Zinc-Enriched Medicinal And Food Plants. Systematic Reviews in Pharmacy. 2020 Oct-Nov 11;(10);731-726 doi: 10.22159/ijap.2021v13i4.41818.

An S, Reza S, Norlin B, Fröjdh C, Thungström G. Signal-to-noise ratio optimization in X-ray fluorescence spectrometry for chromium contamination analysis. Talanta. 2021 Aug 1;230:122236. doi: 10.1016/j.talanta.2021.122236. Epub 2021 Feb 22. PMID: 33934759.

Chichaeva M, Lychagin M, Syroeshkin AV, Chernitsova O. Heavy metals in marine aerosols of the Azov Sea. Geography, Environment, Sustainability [Internet]. 2020 Jun 24 [cited 2023 Nov 17];13(2):127-134. Available from: https://doi.org/10.24057/2071-9388-2020-11

Syroeshkin AV, Goncharuk VV, Chichaeva MA, Matveeva IS, Grishina MP, Maximova TV, Pleteneva TV. Trace elements in marine aerosols. Elsevier: Journal of Trace Elements in Medicine and Biology. 2017 41;(1);17. doi: 10.1016/j.jtemb.2017.03.077

Thabit TMAM, Elgeddawy DIH, Shokr SA. Determination of Some Common Heavy Metals and Radionuclides in Some Medicinal Herbs Using ICP-MS/MS. J AOAC Int. 2020 Sep 1;103(5):1282-7. doi: 10.1093/jaoacint/qsaa037. PMID: 33241389.

S Azemard, E Vasileva-Veleva, L Barilaro-Hamonic editor. International atomic energy agency. Worldwide Interlaboratory Comparison on the Determination of Trace Elements in Oyster Biota Sample IAEA-470. Vienna: IAEA Analytical Quality in Nuclear Applications Series No. 56, IAEA; 2018. p. 5.

Wilschefski SC, Baxter MR. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev. 2019 Aug;40(3):115-133. doi: 10.33176/AACB-19-00024. PMID: 31530963; PMCID: PMC6719745.

Quevauviller, PH Maier, E Kramer KJM. Production of Certified Reference Materials for Pollutants in Environmental Matrices. Brussels and CCF Academic Press: Tarbes European Commission Report EUR 1815; European Commission; 1998. p. 251.

Nikulin A. Development of a technique for determining cadmium, lead, arsenic with the etaas method in medicinal plant raw materials. Farmacia [Internet]. 2021 Jun 28 [cited 2023 Nov 17];69(3):566–575. Available from: https://doi.org/10.31925/farmacia.2021.3.20

B Sansoni, G Iyengar. Sampling and storage of biological materials for trace element analysis", Elemental Analysis of Biological Materials. Vienna; IAEA, Technical Reports Series No. 197; 1980. p. 67.

Ihnat, M. Twenty five years of reference material activity at Agriculture and Agri-Food Canada. Fresenius' Journal of Analytical Chemistry. 2001 Jun; 370(2-3): 279-285. doi: 10.1007/s002160100803. PMID: 11451252.

Ihnat M. Development of a new series of agricultural/food reference materials for analytical quality control of elemental determinations. J AOAC Int. 1994 Nov-Dec;77(6):1605-27. PMID: 7819768.

Inhat M. Biological reference materials for quality control. Quantitative Trace Analysis of Biological Materials. Amsterdam: Elsevier, 1988. p. 331-351.

Huntoon R, Standard reference materials and meaningful measurements, an overview. Standard Reference Materials and Meaningful Measurements. Washington DC: National Bureau of Standards Special Publications 408; 1975. p. 4-56.

Nguyen Q, Doan MD, Thi BHB, Nguyen M, Minh DT, Nguyen AD, Le TM, Nguyen THT, Nguyen TD, Tran VC, Hoang VC. The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology [Internet]. 2022 Nov 17;[cited 2023 Nov 17];41(8):1291–1302. Available from: https://doi.org/10.1080/07373937.2022.2145305.

GOST (State Standard) 8.315-2019: State system for Ensuring the Uniformity of Measurements. Certified Reference Materials of Composition and Properties of Substances and Materials. Basic Principles, Moscow: Standartinform [Internet]. 2020;[cited 2023 Nov 17]. Available from: https://docs.cntd.ru/document/1200169335.

GOST (State Standard) 8.531-2002: State System for Ensuring the Uniformity of Measurements. Reference Materials of Composition of Solid and Disperse Materials. Ways of Homogeneity Assessment, Moscow: Izd. Standartov [Internet]. 2003;[cited 2023 Nov 17]. Available from: https://docs.cntd.ru/document/1200030459.

GOST (State Standard) R 8.691-2010: State System for Ensuring the Uniformity of Measurements. Certified Reference Materials. Contents of Certificates and Labels, Moscow: Standartinform [Internet]. 2010;[cited 2023 Nov 17]. Available from: https://docs.cntd.ru/document/1200083494

ISO/IEC Guide 99:2007: International Vocabulary of Metrology. Basic and General Concepts and Associated Terms (VIM), Geneva: ISO. [Internet]. 2007;[cited 2023 Nov 17]. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:guide:99:ed-1:v2:en.

ISO Guide 30:2015: Reference Materials. Selected Terms and Definitions, Geneva: BSI. [Internet]. 2015; [cited 2023 Nov 17]. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:guide:30:ed-3:v1:en.

ISO Guide 33:2015. Reference Materials. Good Practice in Using Reference Materials, Geneva: BSI. [Internet]. 2015;[cited 2023 Nov 17]. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:guide:30:ed-3:v1:en

Syroeshkin A, Matveeva I, Chikviladze G. Results of long-term intercomparison exercises in IAEA system. Mikroelementy v medicine. [Internet]. 2010;[cited 2023 Nov 17]. Available from: https://journal.microelements.ru/uploads/2010_1/11-14_2010.pdf;11;(1);11-14.

Coquery M, Carvalho FP, Azemard S, Horvat M. The IAEA worldwide intercomparison exercises (1990-1997): determination of trace elements in marine sediments and biological samples. Sci Total Environ. 1999 Sep 30;237-238. doi: 10.1016/s0048-9697(99)00161-8. PMID: 10568298. 32. Frimpong-Manso S, Asiedu-Gyekye IJ, Naadu JP, Magnus-Aryitey GT, Nyarko AK, Boamah D, Awan M. Micro and Macro Element Composition of Kalanchoe integra Leaves: An Adjuvant Treatment for Hypertension in Ghana. Int J Hypertens. 2015;2015:579497. doi: 10.1155/2015/579497. Epub 2015 Oct 1. PMID: 26495138; PMCID: PMC4606399.

Published

07-03-2024

How to Cite

GAIDASHEV, I. A., & SYROESHKIN. (2024). DEVELOPMENT OF A REFERENCE SAMPLE FOR RAPID ANALYSIS OF AN ELEMENTAL COMPOSITION OF MEDICINAL PLANT RAW MATERIALS. International Journal of Applied Pharmaceutics, 16(2), 174–181. https://doi.org/10.22159/ijap.2024v16i2.49870

Issue

Section

Original Article(s)