QUANTITATIVE DETERMINATION OF SOME NON-STEROIDAL ANTI-INFLAMMATORY DRUGSAND THEIR ACID DISSOCIATION CONSTANTS BY DIRECT POTENTIOMETRY

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50111

Keywords:

Chemometrics, Potentiometry, Acid-base constants, Flurbiprofen, Ibuprofen, Ketoprofen, Non-steroidal anti-inflammatory drugs

Abstract

Objective: A potentiometric titration method was applied to determine non-steroidal anti-inflammatory drugs. The quantitative analysis and the treatment of the primary data are based on a nonlinear regression procedure using commercial software. A general formula valid for every type of acid-base titration, derived before is used as a direct input.

Methods: Potentiometric titration of ibuprofen, flurbiprofen, and ketoprofen with sodium hydroxide solution (0.1 mol/l). The solutions of ibuprofen, flurbiprofen, and ketoprofen were prepared in solvent CH3OH: H2O (40:60%). The determination was carried out using a 713 Metrohm pH meter, equipped with Metrohm combined electrode ref. 6.0228.000 Pt1000 with temperature sensor and auto burette. The analysis was performed at ionic strength (I=0.2 mol/l KCl) and t = 25±0.2 °C.

Results: The discussed substances were analyzed using potentiometric titration with a standard sodium hydroxide solution (0.1 mol/l). The experimental data V, ml/E, mV and the conditions of these titrations were used as input in the Data Fit program fixing the following parameters Vo =100.0 ml; Ct (NaOH) = 0.1000 mol/l; S = 59.16 mV (corresponding to 25 °C theoretical value) and Kw = 1.2 10-14 (ionic strength 0.2 mol/l). The analytical results for ibuprofen, flurbiprofen and ketoprofen were determined with good accuracy (error+0.4 % foribuprofen+0.2 % for flurbiprofen and+0.2 % for ketoprofen) and precision (1 % for the three). The quantity and acid-base constants of ibuprofen, flurbiprofen, and ketoprofen were determined alone and in tablets. The validation of the method showed very good accuracy and precision.

Conclusion: The present approach can be successfully used in routine analysis of the study drugs in quality control laboratories.

Downloads

Download data is not yet available.

References

Becker DE, Phero JC. Drug therapy in dental practice: nonopioid and opioid analgesics. Anesth Prog. 2005;52(4):140-9. doi: 10.2344/0003-3006(2005)52[140:DTD]2.0.CO;2, PMID 16596914.

Kean WF, Buchanan WW. The Use of NSAIDs in rheumatic disorders 2005: a global perspective. Inflammopharmacology. 2005;13(4):343-70. doi: 10.1163/156856005774415565, PMID 16354389.

Ong KS, Seymour RA. Maximizing the safety of nonsteroidal anti-inflammatory drug use for postoperative dental pain: an evidence-based approach. Anesth Prog. 2003;50(2):62-74. PMCID PMC2007429, PMID 12866802.

Bunaciu AA, Grasu A, Aboul Enein HY. Pharmaceutical applications of a flurbiprofen sensor. Anal Chim Acta. 1995;311(2):193-7. doi: 10.1016/0003-2670(95)00165-V.

Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002 Jun;3(2):E10. doi: 10.1208/pt030210, PMID 12916947.

Sajeev C, Jadhav PR, Ravi Shankar D, Saha RN. Determination of flurbiprofen in pharmaceutical formulations by UV spectrophotometry and liquid chromatography. Anal Chim Acta. 2002;463(2):207-17. doi: 10.1016/S0003-2670(02)00426-9.

Anderson BD, Conradi RA. Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug. J Pharm Sci. 1985 Aug;74(8):815-20. doi: 10.1002/jps.2600740803, PMID 4032262.

Rafols C, Roses M, Bosch E. Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Anal Chim Acta. 1997 Sep;350(1-2):249-55. doi: 10.1016/S0003-2670(97)00307-3.

Espitalier F, Biscans B, Laguerie C. Physicochemical data on ketoprofen in solutions. J Chem Eng Data. 1995 Nov;40(6):1222-4. doi: 10.1021/je00022a016.

Ghezzi P, Melillo G, Meazza C, Sacco S, Pellegrini L, Asti C. Differential contribution of R and S isomers in ketoprofen anti-inflammatory activity: role of cytokine modulation. J Pharmacol Exp Ther. 1998 Dec;287(3):969-74. PMID 9864281.

Sánchez Dasi MJ, Garrigues S, Cervera ML, de la Guardia M. On-line solvent recycling: a tool for the development of clean analytical chemistry in flow injection Fourier transform infrared spectrometry. Determination of ketoprofen. Anal Chim Acta. 1998 Apr;361(3):253-60. doi: 10.1016/S0003-2670(98)00027-0.

Bashyal S. Ibuprofen and its different analytical and manufacturing methods: a review. Asian J Pharm Clin Res. 2018 Jul;11(7):25-9. doi: 10.22159/ajpcr.2018.v11i7.24484.

Al-Mousawy J, Al-Hussainy Z, Alaayedi M. Formulation and evaluation of effervescent granules of ibuprofen. Int J App Pharm. 2019 Sep;11(6):66-9. doi: 10.22159/ijap.2019v11i6.34912.

Mitic SS, Miletic GZ, Pavlovic AN, Arsic BB, Zivanovic VV. Quantitative analysis of ibuprofen in pharmaceuticals and human control serum using kinetic spectrophotometry. J Serb Chem Soc. 2008 Aug;73(8-9):879-90. doi: 10.2298/JSC0809879M.

Imanto T, Wikantyasning ER, Nurwaini S, Amalia M, Sambudi NS, Harun NY. Preparation and solid-state characterization of ketoprofen-succinic acid-saccharin co-crystal with improved solubility. Int J App Pharm. 2024;16(1):275-9. doi: 10.22159/ijap.2024v16i1.48829.

Hamoudova R, Pospisilova M. Determination of ibuprofen and flurbiprofen in pharmaceuticals by capillary zone electrophoresis. J Pharm Biomed Anal. 2006 Jun;41(4):1463-7. doi: 10.1016/j.jpba.2006.03.024, PMID 16687231.

Kandula RK, Sundararajan R. Stability indicating RP-HPLC assay of hydrocodone and ibuprofen in tablets. Int J App Pharm. 2019 May;11(4):285-90. doi: 10.22159/ijap.2019v11i4.33376, doi: 10.22159/ijap.2019v11i4.33376.

Yilmaz B, Alkan E. Determination of flurbiprofen in pharmaceutical preparations by GC–MS. Arab J Chem. 2019 Dec;12(8):2077-83. doi: 10.1016/j.arabjc.2014.12.038.

Luo L, Tan M, Luo Y. Determination of related substances in ketoprofen injection by RP-HPLC method. Pak J Pharm Sci. 2019 Jul;32(4):1607-14. PMID 31608880.

Mehmood T, Hanif S, Azhar F, Ali I, Alafnan A, Hussain T. HPLC method validation for the estimation of lignocaine HCl, ketoprofen and hydrocortisone: greenness analysis using AGREE score. Int J Mol Sci. 2022;24(1):1-11. doi: 10.3390/ijms24010440, PMID 36613881.

Lima AB, Faria EO, Montes RHO, Cunha RR, Richter EM, Munoz RAA. Electrochemical oxidation of ibuprofen and its voltammetric determination at a boron-doped diamond electrode. Electroanalysis. 2013 Jun;25(7):1585-8. doi: 10.1002/elan.201300014.

Chaves SC, Aguiar PNC, Torres LMFC, Gil ES, Luz RCS, Damos FS. Simultaneous determination of caffeine, ibuprofen, and paracetamol by flow-injection analysis with multiple-pulse amperometric detection on boron-doped diamond electrode. Electroanalysis. 2015 Jul;27(12):2785-91. doi: 10.1002/elan.201500306.

Alvarez Romero GA, Lozada Ascencio SM, Rodríguez Avila JA, Galan Vidal CA, Paez Hernandez ME. Potentiometric quantification of saccharin by using a selective membrane formed by pyrrole electropolymerization. Food Chem. 2010 Jun;120(4):1250-4. doi: 10.1016/j.foodchem.2009.11.072.

Nazarov VA, Sokolova EI, Andronchik KA, Egorov VV, Belyaev SA, Yurkshtovich TL. Ibuprofen-selective electrode on the basis of a neutral carrier, N-trifluoroacetylbenzoic acid heptyl ester. J Anal Chem. 2010 Aug;65(9):960-3. doi: 10.1134/S1061934810090121.

Sousa TFA, Amorim CG, Montenegro MCBSM, Araújo AN. Cyclodextrin based potentiometric sensor for determination of ibuprofen in pharmaceuticals and waters. Sens Actuators B. 2013 Jan;176:660-6. doi: 10.1016/j.snb.2012.09.016.

Lenik J, Wardak C. Properties of ibuprofen ion-selective electrodes based on the ion pair complex of tetraoctylammonium cation. Open Chemistry. 2010 Mar;8(2):382-91. doi: 10.2478/s11532-010-0005-3.

Hassan SSM, Mahmoud WH, Elmosallamy MAF, Almarzooqi MH. Novel ibuprofen potentiometric membrane sensors based on tetraphenylporphyrinato indium(III). Anal Sci. 2003 May;19(5):675-9. doi: 10.2116/analsci.19.675, PMID 12769363.

Skoog AD4, Holler JF, Crouch SR. Principles of instrumental analysis. 7th ed. Cengage Learning; 2017.

Santini AO, de Oliveira JE, Pezza HR, Pezza L. A new potentiometric ibuprofenate ion sensor immobilized in a graphite matrix for determination of ibuprofen in tablets. Microchem J. 2006 Sep;84(1-2):44-9. doi: 10.1016/j.microc.2006.04.007.

Rivera Hernandez SI, Alvarez Romero GA, Corona Avendano S, Paez Hernandez ME, Galan Vidal CA, Romero Romo M. Development of a second type electrode based on the silver/silver ibuprofenate pair for ibuprofen quantification in pharmaceutical samples. Quim Nova. 2017 Jan;40(1):68-73. doi: 10.21577/0100-4042.20160166.

Rafols C, Roses M, Bosch E. Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Anal Chim Acta. 1997 Sep;350(1-2):249-55. doi: 10.1016/S0003-2670(97)00307-3.

Meloun M, Bordovska S, Galla L. The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. J Pharm Biomed Anal. 2007 Nov;45(4):552-64. doi: 10.1016/j.jpba.2007.07.029, PMID 17825517.

Domanska U, Pobudkowska A, Pelczarska A, Gierycz P. pKa and solubility of drugs in water, ethanol, and 1-octanol. J Phys Chem B. 2009 Jul;113(26):8941-7. doi: 10.1021/jp900468w, PMID 19518053.

Herzfeldt CD, Kümmel R. Dissociation constants, solubilities and dissolution rates of some selected nonsteroidal antiinflammatories. Drug Dev Ind Pharm. 1983;9(5):767-93. doi: 10.3109/03639048309039887.

Manderscheid M, Eichinger T. Determination of pKa values by liquid chromatography. J Chromatogr Sci. 2003 Jul;41(6):323-6. doi: 10.1093/chromsci/41.6.323, PMID 12935305.

Ruiz R, Roses M, Rafols C, Bosch E. Critical validation of a new simpler approach to estimate aqueous pKa of drugs sparingly soluble in water. Anal Chim Acta. 2005 Sep;550(1-2):210-21. doi: 10.1016/j.aca.2005.06.058.

Ren H, Wang L, Wang X, Liu X, Jiang S. Measurement of acid dissociation constants and ionic mobilities of 3-nitro-tyrosine and 3-chloro-tyrosine by capillary zone electrophoresis. J Pharm Biomed Anal. 2013 Apr;77:83-7. doi: 10.1016/j.jpba.2013.01.015, PMID 23384554.

Assouma DC, Kwa Koffi KE, Niamien PM, AvoBile EB, Aka KH. Experimental and theoretical studies of oxalic acid dissociation in water-ethanol solvents. Int J Sci Res. 2015 Dec;4(12):280-6. doi: 10.21275/v4i12.NOV151830.

Gumustas M, Şanlı S, Şanlı N, Ozkan SA. Determination of pKa values of some antihypertensive drugs by liquid chromatography and simultaneous assay of lercanidipine and enalapril in their binary mixtures. Talanta Talanta. 2010;82(4):1528-37. doi: 10.1016/j.talanta.2010.07.037.

Canbay HS, Demiralay EC, Alsancak G, Ozkan SA. Chromatographic determination of pKa values of some water-insoluble arylpropionic acids and arylacetic acids in acetonitrile+water media. J Chem Eng Data. 2011;56(5):2071-6. doi: 10.1021/je1010533.

Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The significance of acid/base properties in drug discovery. Chem Soc Rev. 2013 Jan;42(2):485-96. doi: 10.1039/c2cs35348b, PMID 23099561.

Martinez CH, Dardonville C. Rapid determination of ionization constants (pK a) by UV spectroscopy using 96-well microtiter plates. ACS Med Chem Lett. 2013 Jan;4(1):142-5. doi: 10.1021/ml300326v, PMID 24900577.

D Dyrssen, D Jagner, F Wengelin. Computer calculation of ionic equilibria and titration procedures with specific reference to analytical chemistry. Analytica Chimica Acta. 1969;48(2):443-4. doi: 10.1016/S0003-2670(01)85520-3.

Ingman F, Johansson A, Johansson S, Karlsson R. Titration of mixtures of acids of nearly equal strengths. Anal Chim Acta. 1973 Mar;64(1):113-20. doi: 10.1016/S0003-2670(00)86898-1.

Islamoglu F, Yuksek H, Ozdemir M. Acidic properties of some 1,2,4-triazole derivatives in nonaqueous media. Chem Sin. 2011;2(3):117-24. ISSN: 0976-8505.

Thanavelan R, Manikandan G, Ramalingam G, Thanikachalam V. Mixed ligand chelates of Cd2+with 2-(1-(aminomethyl) cyclohexyl) acetic acid and dicarboxylic acids. Chem Sin. 2011;2(4):90-8. ISSN: 0976-8505.

Maslarska V, Tencheva J, Budevsky O. New approach in the treatment of data from an acid-base potentiometric titrationI. Monocomponent systems of monofunctional acids and bases. Anal Bioanal Chem. 2003 Jan;375(2):217-22. doi: 10.1007/s00216-002-1671-6, PMID 12560965.

ICH harmonized tripartite guideline validation of analytical procedures: text and methodology Q2. 1st version. En: pdf International Conference on Harmonization. Vol. R1(v). Geneva: ICH; 2005. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r1-validation-analytical-procedures-text-and-methodology-step-5.

Published

07-05-2024

How to Cite

MASLARSKA, V. (2024). QUANTITATIVE DETERMINATION OF SOME NON-STEROIDAL ANTI-INFLAMMATORY DRUGSAND THEIR ACID DISSOCIATION CONSTANTS BY DIRECT POTENTIOMETRY. International Journal of Applied Pharmaceutics, 16(3), 320–325. https://doi.org/10.22159/ijap.2024v16i3.50111

Issue

Section

Original Article(s)