DECODING THE THERAPEUTIC POTENTIAL OF EMPON-EMPON: A BIOINFORMATICS EXPEDITION UNRAVELING MECHANISMS AGAINST COVID-19 AND ATHEROSCLEROSIS

Authors

  • NUR HASANAH Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Jawa Barat-16424, Indonesia https://orcid.org/0000-0001-9436-5745
  • FADLINA CHANY SAPUTRI National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java-16424, Indonesia. Departement of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok-16424, Indonesia https://orcid.org/0000-0002-6668-8915
  • ALHADI BUSTAMAM Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok-16424, Indonesia
  • VANNAJAN SANGHIRAN LEE 5Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia https://orcid.org/0000-0002-2911-7726
  • ARRY YANUAR Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Jawa Barat-16424, Indonesia. National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java-16424, Indonesia https://orcid.org/0000-0001-8895-9010

DOI:

https://doi.org/10.22159/ijap.2024v16i2.50128

Keywords:

Atherosclerosis, COVID-19, Empon-empon, Networkpharmacology, Molecular docking

Abstract

Objective: This study aims to elucidate the main compounds and mechanisms of action of Empon-empon (EE), a traditional Indonesian herb used for treating COVID-19 and atherosclerosis, utilizing an integrated network pharmacology and molecular docking approach.

Methods: Active compounds in EE were obtained through the KNApSAcK, screening active compounds using parameters: oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. Compound-related target genes were collected from GeneCard, ChemBL, and Traditional Chinese Medicine Systems Pharmacology (TCMSP). Disease targets were obtained from the GeneCard database. The protein-protein interaction (PPI) network was built using STRING and visualized using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using ShinyGO. Molecular docking analysis using Autodock Vina in PyRx.

Results: We identified 18 main compounds in EE. PPI analysis obtained 5 central EE targets involved in treating COVID-19 and atherosclerosis, namely E1A Binding Protein P300 (EP300), Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1), SRC Proto-Oncogene (SRC), Estrogen Receptor 1 (ESR1), and RELA Proto-Oncogene (RELA). GO and KEGG analysis illustrated EE's pharmacological effects through pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling, including Coronavirus disease. Catechin and quercetin exhibited the strongest binding affinity to EP300; licarin B and delphinidin to HSP90AA1; epicatechin and delphinidin to SRC; galangin and ellagic acid to ESR1; and guaiacin and licarin B to RELA.

Conclusion: This research provides a strong foundation regarding the main compound and mechanism action of EE in treating atherosclerosis and COVID-19, suggesting potential as a novel therapeutic agent.

Downloads

Download data is not yet available.

References

WHO. Situation by Region, Country, Territory and Area. WHO Coronavirus (COVID-19) Dashboard. Vol. 35(17); 2023. p. 2104. Available from: https://covid19.who.int. [Last accessed on 10 Feb 2024]

Ronconi G, Tete G, Kritas SK, Gallenga CE, Caraffa Al, Ross R. SARS-CoV-2, which induces COVID-19, causes kawasaki-like disease in children: role of pro-inflammatory and anti-inflammatory cytokines. J Biol Regul Homeost Agents. 2020;34(3):767-73. doi: 10.23812/editorial-ronconi-e-59, PMID 32476380.

Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7(6):998-1002. doi: 10.1093/nsr/nwaa041, PMID 34676125.

Zageer Ds, Hantoosh Sf, QSh. Ali W. Association between elevated high sensitivity cardiac-troponin I levels and increase in levels of C-reactive protein, interleukin-6, D-dimer, and consequent cardiac injury and mortality for patients with coronavirus disease 2019: a meta-analysis. Asian J Pharm Clin Res. 2021;14(6):160-6.

Ma Y, Deng J, Liu Q, Du M, Liu M, Liu J. Long-term consequences of COVID-19 at 6 mo and above: A systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19(11).

Lee CCE, Ali K, Connell D, Mordi IR, George J, Lang EMSL. COVID-19-associated cardiovascular complications. Diseases. 2021;9(3). doi: 10.3390/diseases9030047, PMID 34209705.

Seeherman S, Suzuki YJ. Viral infection and cardiovascular disease: implications for the molecular basis of COVID-19 pathogenesis. Int J Mol Sci. 2021;22(4):1-13. doi: 10.3390/ijms22041659, PMID 33562193.

Madjid M, Aboshady I, Awan I, Litovsky S, Casscells SW. Influenza and cardiovascular disease: is there a causal relationship? Tex Heart Inst J. 2004;31(1):4-13. PMID 15061620.

Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-research that is available on the COVID-19 resource centre-including this for unrestricted research re-use a (January); 2020. p. 19-21.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Pavan Kumar M, Revathi G, Supraja K, sechana K. Study of demographic analysis, clinical characteristics, diagnosis, management and complications in Covid-19 patients. Asian J Pharm Clin Res. 2021;14(12):64-8. doi: 10.22159/ajpcr.2021.v14i12.43085.

Liu Y, Zhang HG. Vigilance on new-onset atherosclerosis following SARS-CoV-2 Infection. Front Med (Lausanne). 2020;7:629413. doi: 10.3389/fmed.2020.629413, PMID 33553222.

Duntas LH, Chiovato L. Cardiovascular risk in patients with subclinical hypothyroidism. Eur Endocrinol. 2014;10(2):157-60. doi: 10.17925/EE.2014.10.02.157, PMID 29872482.

Vinciguerra M, Romiti S, Sangiorgi GM, Rose D, Miraldi F, Greco E. Sars-cov-2 and atherosclerosis: should COVID-19 be recognized as a new predisposing cardiovascular risk factor? J Cardiovasc Dev Dis. 2021;8(10). doi: 10.3390/jcdd8100130, PMID 34677199.

Kumar S, Singh S, Singh P. Detrimental effect of diabetes and hypertension on the severity and mortality of COVID-19 infection (January); 2020.

Ohsfeldt RL, Gandhi SK, Fox KM, Bullano MF, Davidson M. Medical and cost burden of atherosclerosis among patients treated in routine clinical practice. J Med Econ. 2010;13(3):500-7. doi: 10.3111/13696998.2010.506348, PMID 20673198.

Zhou Q, Zhao S, Gan L, Wang Z, Peng S, Li Q. Use of non-steroidal anti-inflammatory drugs and adverse outcomes during the COVID-19 pandemic: a systematic review and meta-analysis. E Clinical Medicine. 2022;46:101373. doi: org/10.1016/j.eclinm.2022.101373, PMID 35434582.

Moore N, Bosco Levy P, Thurin N, Blin P, Droz Perroteau C. NSAIDs and COVID-19: a systematic review and meta-analysis. Drug Saf. 2021;44(9):929-38. doi: org/10.1007/s40264-021-01089-5, PMID 34339037.

Kow CS, Hasan SS. The association between the use of statins and clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2022;22(2):167-81. doi: 10.1007/s40256-021-00490-w, PMID 34341972.

Hasanah N, Chany F, Bustamam A, Yanuar A. Traditional Indonesian medication combats COVID-19; 2023. p. 1-24.

Yanuar A, Muni’m A, Lagho ABA, Syahdi RR, Rahmat M, Suhartanto H. Medicinal plants database and three-dimensional structure of the chemical compounds from the medicinal plants in Indonesia. Int J Computer Sci. 2011;8(5):180–3.

Fu S, Zhou Y, Hu C, Xu Z, Hou J. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complement Med. 2022;22(1):210. doi: 10.1186/s12906-022-03662-6, PMID 35932042.

Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Network pharmacology, molecular docking and Molecular Dynamics to explore the potential immunomodulatory mechanisms of deer antler. Int J Mol Sci. 2023;24(12):10370. doi: 10.3390/ijms241210370, PMID 37373516.

Nurhidayah M, Fadilah F, Arsianti A, Bahtiar A. Identification of Fgfr inhibitor as St2 receptor/interleukin-1 receptor-like 1 inhibitor in chronic obstructive pulmonary disease due to exposure to E-cigarettes by network pharmacology and molecular docking prediction. Int J App Pharm. 2022;14(2):256-66. doi: 10.22159/ijap.2022v14i2.43784.

Nahir CF, Putra MY, Wibowo JT, Lee VS, Yanuar A. The potential of indonesian marine natural product with dual targeting activity through Sars-Cov-2 3Clpro and PLpro: an in silico studies. Int J App Pharm. 2023;15(5):171-80. doi: 10.22159/ijap.2023v15i5.48416.

Giner-soriano M, Dominguez A, Morros R, Pericas C, Dolores A. Vilaplana-carnerero C. Narrative Rev. 2023;2:1-14.

Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007;3(4):e59. doi: 10.1371/journal.pcbi.0030059, PMID 17447836.

Li M, Wang JX, Wang H, Pan Y. Identification of essential proteins from weighted protein-protein interaction networks. J Bioinform Comput Biol. 2013;11(3):1341002. doi: 10.1142/S0219720013410023, PMID 23796179.

Zhang X, Xiao W, Hu X. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. PLOS ONE. 2018;13(4):e0195410. doi: 10.1371/journal.pone.0195410, PMID 29634727.

Rubio K, Molina Herrera A, Perez Gonzalez A, Hernandez Galdamez HV, Piña-Vazquez C, Araujo Ramos T. EP300 as a molecular integrator of fibrotic transcriptional programs. Int J Mol Sci. 2023;24(15):1-23. doi: 10.3390/ijms241512302, PMID 37569677.

Tao J, Zhang M, Wen Z, Wang B, Zhang L, Ou Y. Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomed Pharmacother. 2018;106(May):1727-33. doi: 10.1016/j.biopha.2018.07.132, PMID 30119248.

Liu C, Fan FF, Li XH, Wang WX, Tu Y, Zhang Y. Elucidation of the mechanisms underlying the anticholecystitis effect of the tibetan medicine ”Dida” using network pharmacology. Trop J Pharm Res. 2020;19(9):1953-61. doi: 10.4314/tjpr.v19i9.22.

Kilic A, Mandal K. Heat shock proteins: pathogenic role in atherosclerosis and potential therapeutic implications. Autoimmune Dis. 2012;2012(1):502813. doi: 10.1155/2012/502813, PMID 23304456.

Madrigal Matute J, Lopez Franco O, Blanco Colio LM, Munoz Garcia B, Ramos-Mozo P, Ortega L. Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res. 2010;86(2):330-7. doi: 10.1093/cvr/cvq046, PMID 20154064.

Lubkowska A, Pluta W, Stronska A, Lalko A. Role of heat shock proteins (Hsp70 and hsp90) in viral infection. Int J Mol Sci. 2021;22(17). doi: 10.3390/ijms22179366, PMID 34502274.

Wang JG, Aikawa M. Toll-like receptors and src-family kinases in atherosclerosis–Focus on macrophages. Circ J. 2015;79(11):2332-4. doi: 10.1253/circj.CJ-15-1039, PMID 26467082.

Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012;2012:512926. doi: 10.1155/2012/512926, PMID 23209344.

Chen W, Zheng W, Liu S, Su Q, Ding K, Zhang Z. SRC-3 deficiency prevents atherosclerosis development by decreasing endothelial ICAM-1 expression to attenuate macrophage recruitment. Int J Biol Sci. 2022;18(15):5978-93. doi: 10.7150/ijbs.74864, PMID 36263184.

Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep. 2022;12(1):9462. doi: org/10.1038/s41598-022-13585-4, PMID 35676404.

Hirankarn N, Manonom C, Tangkijvanich P, Poovorawan Y. Association of interleukin-18 gene polymorphism (−607A/A genotype) with susceptibility to chronic hepatitis B virus infection. Tissue Antigens. 2007;70(2):160-3. doi: 10.1111/j.1399-0039.2007.00865.x, PMID 17610422.

Xiao W, Xu Y, Baak JP, Dai J, Jing L, Zhu H. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement Med. 2023;23(1):345. doi: 10.1186/s12906-023-04148-9, PMID 37770919.

Jimi E, Fei Huang CN. NF-κB signaling regulates; 2019. p. 3-11.

Cuhlmann S, Van Der Heiden K, Saliba D, Tremoleda JL, Khalil M, Zakkar M. Disturbed blood flow induces rela expression via c-Jun N-terminal kinase 1: a novel mode of NF-κB regulation that promotes arterial inflammation. Circ Res. 2011;108(8):950-9. doi: 10.1161/circresaha.110.233841, PMID 21350211.

Published

07-03-2024

How to Cite

HASANAH, N., SAPUTRI, F. C., BUSTAMAM, A., SANGHIRAN LEE, V., & YANUAR, A. (2024). DECODING THE THERAPEUTIC POTENTIAL OF EMPON-EMPON: A BIOINFORMATICS EXPEDITION UNRAVELING MECHANISMS AGAINST COVID-19 AND ATHEROSCLEROSIS. International Journal of Applied Pharmaceutics, 16(2), 215–223. https://doi.org/10.22159/ijap.2024v16i2.50128

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3