PREPARATION, CHARACTERIZATION, AND IN VITRO EVALUATION OF GEL CONTAINING NANOPHYTO-PHOSPHOLIPID COMPLEX OF KOPASANDA LEAF EXTRACT (CHROMOLAENA ODORATA (L.) R. M. KING AND H. ROB)

Authors

  • SUCILAWATY RIDWAN Departement of Pharmacy, Faculty of Medicine and Health Sciences, Mataram University, Mataram-83125, Indonesia https://orcid.org/0009-0001-9182-8457
  • NURUL WAHYUNI National Research and Innovation Agency, Indonesia
  • GUNAWAN PASARIBU National Research and Innovation Agency, Indonesia
  • SAFWAN SAFWAN Department of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia https://orcid.org/0000-0002-8048-0301
  • WAHIDA HAJRIN Departement of Pharmacy, Faculty of Medicine and Health Sciences, Mataram University, Mataram-83125, Indonesia
  • MARIAMA FITRIANA Departement of Pharmacy, Faculty of Medicine and Health Sciences, Mataram University, Mataram-83125, Indonesia
  • KAMELIA ROIYAN Departement of Pharmacy, Faculty of Medicine and Health Sciences, Mataram University, Mataram-83125, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.50147

Keywords:

Nanophyto-phospholipid complex, Chromolaena odorata (L.) R.M. King & H. Rob), Antisolvent precipitation method, Gel, Permeation studies

Abstract

Objective: This study aims to prepare, characterize, and in vitro evaluation of the gel containing nanophyto-phospholipid complex of kopasanda leaf extract.

Methods: Kopasanda dried leaf was extracted by extraction reflux method, followed by total phenolic content of extract measurement using Spectrophotometry UV-Vis method. The nanophyto-phospholipid complex was prepared using an antisolvent evaporation method with various ratios between extract and phospholipid of 1:1; 1:2; 1:3. The optimum ratio was evaluated by entrapment efficiency (%). The nanophyto-phospholipid complex formation was characterized by polydispersity index, particle size, Fourier Transform Infra-Red (FT-IR), and the Transmission Electron Microscope (TEM) method. The optimum nanophyto-phospholipid complex was formulated into gel preparation. The in vitro permeation study was performed to discover the influence of gel containing nanophyto-phospholipid complex compared with gel-containing extract without the nanophyto-phospholipid complex formation.

Results: Thetotal phenolic content of kopasanda leaf extract was 117.214±3.054 mg/GAE. The optimum ratio of kopasanda leaf extract and phospholipid was 1: 2 with entrapment efficiency (%), particle size, and polydispersity index equal to 99.897±0.001%, 130.1 nm and 0.394. The morphology of the nanophyto-phospholipid complex was spherical and the complex formation was confirmed by the FTIR spectrum. The permeation test showed that the gel containing nanophyto-phospholipid complex had better diffusion than the gel without the nanophyto-phospholipid complex formation.

Conclusion: The gel containing nanophyto-phospholipid complex formation exhibited the potential drug delivery system to increase the phenolic content permeation of kopasanda leaf extract.

Downloads

Download data is not yet available.

References

Gaurav V, Paliwal S, Singh A, Pandey S, Aqil M. Phytosomes: preparation evaluation and application. Int J Res Eng Sci. 2021;9(21):35-9.

Alara OR, Nour AH, Binti Abdul Mudalip SK. Screening of microwave-assisted batch extraction parameters for recovering total phenolic and flavonoid contents from Chromolaena odorata leaves through two-level factorial design. Indones J Chem. 2019;19(2):511-21. doi: 10.22146/ijc.40863.

Srinivasa Rao KS, Chaudhury PK, Pradhan A. Evaluation of anti-oxidant activities and total phenolic content of Chromolaena odorata. Food Chem Toxicol. 2010;48(2):729-32. doi: 10.1016/j.fct.2009.12.005, PMID 20026159.

Akib NI, Hendra NS, Putri AE, Armadhani I, Adjeng AN. Preparation of phytosome of kersen leaves (Muntingia calabura L.) ethanol extract as antioxidant. J Farmasi Sains Praktis. 2021;7(3):393-404. doi: 10.31603/pharmacy.v7i3.6206.

Chandrakala V, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Ittadwar PA, Puranik PK. Novel umbelliferone phytosomes: development and optimization using experimental design approach and evaluation of photoprotective and antioxidant activity. Int J Pharm Pharm Sci. 2017;9(1):218-28. doi: 10.22159/ijpps.2017v9i1.14635.

Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics. 2021;13(9):1475. doi: 10.3390/pharmaceutics13091475, PMID 34575551.

Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S. Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine. 2021 Oct 15;16:6983-7022. doi: 10.2147/IJN.S318416, PMID 34703224.

Varadkar M, Gadgoli C. Preparation and evaluation of wound healing activity of phytosomes of crocetin from Nyctanthes arbour tristis in rats. J Tradit Complement Med. 2022;12(4):354-60. doi: 10.1016/j.jtcme.2021.10.002, PMID 35747356.

Ridwan S, Hartati R, Pamudji JS. Development and evaluation of cream preparation containing phytosome from amla fruit extract (Phyllanthus emblica L.). Int J App Pharm. 2023;15(4):91-8. doi: 10.22159/ijap.2023v15i4.48116.

Fattahi S, Zabihi E, Abedian Z, Pourbagher R, Motevalizadeh Ardekani AM, Mostafazadeh A. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on hela and BT-474 cell lines. Int J Mol Cell Med. 2014;3(2):102-7. PMID 25035860.

Rani A, Kumar S, Khar RK. Murraya koenigii extract loaded phytosomes prepared using antisolvent precipitation technique for improved antidiabetic and hypolidemic activity. Indian J Pharm Educ Res. 2022;56(2s):s326-38. doi: 10.5530/ijper.56.2s.103.

Damle M, Mallya R. Development and evaluation of a novel delivery system containing phytophospholipid complex for skin aging. AAPS Pharm Sci Tech. 2016;17(3):607-17. doi: 10.1208/s12249-015-0386-x, PMID 26285673.

Deleanu M, Toma L, Sanda GM, Barbalata T, Niculescu LS, Sima AV. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability antioxidant and anti-inflammatory effects in vivo. Pharmaceutics. 2023;15(4):1066. doi: 10.3390/pharmaceutics15041066, PMID 37111552.

Roy S, Bose S, Sarkar D, Mandal S, Sarkar S, Mandal SK. Formulation and evaluation of anti-acne gel containing Murraya koeinigii extract. Int J Curr Pharm Sci. 2020;12(4):108-13. doi: 10.22159/ijcpr.2020v12i4.39095.

Chaerunisaa AY, Abdassah M, Levita J, Febrina E, Hafni U. Piroxicam percutaneous permeation from gels through membrane models of shed snakeskin and cellulose. Indonesian J Pharm Sci Technol. 2021;8(2):66-75. doi: 10.24198/ijpst.v8i2.29017.

Maru AD, Lahoti SR. Formulation and evaluation of ointment containing sunflower wax. Asian J Pharm Clin Res. 2019;12(8):115-20.

Ezez D, Tefera M. Effects of solvents on total phenolic content and antioxidant activity of ginger extracts. J Chem. 2021;2021:1-5. doi: 10.1155/2021/6635199.

Blainski A, Lopes GC, DE Mello JC. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 2013;18(6):6852-65. doi: 10.3390/molecules18066852, PMID 23752469.

Vadnere GP, Phytosomes URM. A mini-review. Food Biotechnol. 2021;2(3):17-27.

Semalty A, Semalty M, Rawat MS, Franceschi F. Supramolecular phospholipids-polyphenolics interactions: the phytosome strategy to improve the bioavailability of phytochemicals. Fitoterapia. 2010;81(5):306-14. doi: 10.1016/j.fitote.2009.11.001, PMID 19919847.

Gnananath K, Sri Nataraj K, Ganga Rao B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv Pharm Bull. 2017;7(1):35-42. doi: 10.15171/apb.2017.005, PMID 28507935.

Nanavati B. Phytosome: a novel approach to enhance the bioavailability of phytoconstituent. Asian J Pharm. 2017;11(03). doi: 10.22377/ajp.v11i03.1445.

Maryana W, Rachmawati H, Mudhakir D. Formation of phytosome containing silymarin using thin layer hydration technique aimed for oral delivery. Mater Today Proc. 2016;3(3):855-66. doi: 10.1016/j.matpr.2016.02.019.

Anwar E, Farhana N. Formulation and evaluation of phytosome loaded maltodextrin gum arabic microsphere system for delivery of Camellia sinensis extract. J Young Pharm. 2018;10 Suppl 56:S56-62. doi: 10.5530/jyp.2018.2s.11.

Putri NR, Firdausi SI, Najmina M, Amelia S, Timotius D, Kusumastuti Y. Effect of sonication time and particle size for synthesis of magnetic nanoparticle from local iron sand. J Eng Sci Technol. 2020;15(2):894-904.

Sarkar P, Bhagavatula S, VS. A brief research study on novel antibiotic-producing isolate from VIT Lake Vellore Tamil Nadu. J Appl Pharm Sci. 2014;4(1):61-5. doi: 10.7324/JAPS.2014.40110.

Safitri FI, Nawangsari D, Febrina D. editors. Overview: application of Carbopol 940 in gel. International Conference on Health and Medical Sciences (AHMS 2020). Atlantis Press; 2021. doi: 10.2991/ahsr.k.210127.018.

Wang F, Sun Z, LI X, Wang K, Chen D, LI Z. Study on factors influencing the viscosity of sodium carboxymethyl cellulose used in capsule mucous sealers. Geofluids. 2022;2022(1):1-9. doi: 10.1155/2022/4198311.

Published

07-11-2024

How to Cite

RIDWAN, S., WAHYUNI, N., PASARIBU, G., SAFWAN, S., HAJRIN, W., FITRIANA, M. ., & ROIYAN, K. (2024). PREPARATION, CHARACTERIZATION, AND IN VITRO EVALUATION OF GEL CONTAINING NANOPHYTO-PHOSPHOLIPID COMPLEX OF KOPASANDA LEAF EXTRACT (CHROMOLAENA ODORATA (L.) R. M. KING AND H. ROB). International Journal of Applied Pharmaceutics, 16(6), 292–298. https://doi.org/10.22159/ijap.2024v16i6.50147

Issue

Section

Original Article(s)